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Abstract

Generating query-answering plans for data integration systems requires to trans-

late a user query, formulated in terms of a mediated schema, to a query that uses

relations that are actually stored in data sources. Previous solutions to the transla-

tion problem produced sets of conjunctive plans, and were therefore limited in their

ability to handle recursive queries and to exploit data sources with binding-pattern

limitations and functional dependencies that are known to hold in the mediated

schema. As a result, these plans were incomplete w.r.t. sources encountered in prac-

tice (i.e., produced only a subset of the possible answers).We describe the novel class

of recursive query answering plans, which enables us to settle three open problems.

First, we describe an algorithm for �nding a query plan that produces the maximal

set of answers from the sources for arbitrary recursive queries. Second, we extend

this algorithm to use the presence of functional and full dependencies in the medi-

ated schema. Third, we describe an algorithm for �nding the maximal query plan

in the presence of binding-pattern restrictions in the sources. In all three cases,

recursive plans are necessary in order to obtain a maximal query plan.

1 Introduction

The problem of data integration (a.k.a. information gathering agents) has re-

cently received considerable attention due to the growing number of structured

information sources available online. The goal of data integration systems (e.g.,

1 Work performed while the author was working in the AI Principles Research

Department at AT&T Laboratories.
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TSIMMIS [8,18], HERMES [2], the Internet Softbot [15], SIMS [4], the Infor-

mation Manifold [23], DISCO [16,29], Occam [20], Razor [17], Infomaster [11])

is to provide a uniform query interface to the multiple data sources, thereby

freeing the user from having to locate the relevant sources, query each one in

isolation, and combine manually the information from the di�erent sources.

Data integration systems are based on the following general architecture. The

user interacts with a uniform interface in the form of a set of global relation

names that are used in formulating queries. These relations are called the

mediated schema. The actual data is stored in external sources, called the

source relations. In order for the system to be able to answer queries, we

must specify a mapping between the relations in the mediated schema and

the source relations. A common method to specify these mappings (employed

in [23,20,11]) is to describe each source relation as the result of a conjunctive

query (i.e., a single Horn rule) over the relations in the mediated schema. For

example, a data source containing papers authored by DB researchers would

be described as follows:

s1(P;A) :� paper(P ); author(P;A); db(A).

The relations paper, author and db are in the mediated schema, and can be

used in formulating queries, and s1 is a source relation.

Given a query from the user, formulated in terms of the relations in the me-

diated schema, the system must translate it to a query that mentions only

the source relations, because only these relations are actually available. That

is, the system needs to �nd a query expression that mentions only the source

relations, and is equivalent to the original query. The new query is called a

query plan. The problem of �nding a query plan is the same as the problem

of rewriting queries using views. In this context, the views are the relations

in the sources. The problem of rewriting queries using views has also been

investigated in the database literature because of its importance for query

optimization and data warehousing [32,30,6,22,26,25,10].

Most previous work has considered the problem of �nding query plans where

the query plan is required to be equivalent to the original query. In practice,

the collection of available data sources may not contain all the information

needed to answer a query, and therefore, we need to resort to maximally-

contained plans. A maximally-contained plan provides all the answers that

are possible to obtain from the sources, but the expression describing the plan

may not be equivalent to the original query. For example, if we only have the

s1 source available, and our query asks for all papers by Computer Science

researchers, then the following is a maximally-contained plan:

q(P ) :� s1(P;A).
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In this article we consider several important extensions of the problem of �nd-

ing a maximally-contained plan for a query using a set of data sources. In all of

these extensions we show that it is not possible to �nd a maximally-contained

plan if we restrict ourselves to non-recursive plans. Hence we introduce a new

class of recursive query plans and show the following results:

� We describe an algorithm for �nding a maximally-contained plan for cases

in which the user query is recursive. We show that the problem of �nding

an equivalent plan in this case is undecidable.

� We describe an algorithm for �nding a maximally-contained plan when func-

tional and full dependencies are present in the mediated schema. The pres-

ence of dependencies further complicates the rewriting problem because it

allows rewritings that are not valid otherwise. Furthermore, we show that in

this context there does not always exist a non-recursive maximally-contained

query plan.

� In practice, many data sources have limitations on the ways they can be ac-

cessed. For example, a name server of an institution, holding the addresses

of its employees, will not provide the list of all employees and their ad-

dresses. Instead, it will provide the address for a given name. We extend

our algorithms to the case in which there are limitations on sources, and

they are described by the set of allowed binding patterns. In this case it is

known that recursive plans may be necessary [20]. We describe an algorithm

that constructs a recursive maximally-contained query plan.

Another signi�cant advantage of our algorithms is that they are generative,

rather than descriptive. Our algorithms generate the rewriting in time that

is polynomial in the size of the query. In contrast, previous methods [22,26]

describe the space of possible candidate rewritings, and propose heuristics for

searching this space [20,23]. 2 These methods combine the process of �nding a

rewriting with the process of checking whether it is equivalent to the original

query (which is NP-hard). In contrast, our method isolates the process of

generating the maximally-contained rewriting, which can be done much more

e�ciently.

1.1 Related work

Previous work on this problem did not consider cases where the queries are re-

cursive and where functional or full dependencies exist in the mediated schema.

2 The algorithm in [23] checks whether the plans can be executed given the binding-

pattern restrictions, but is not guaranteed to produce the maximally-contained

rewriting when these restrictions are present. The algorithm in [20] produces only

conjunctive plans that are guaranteed to adhere to the limitations on binding pat-

terns, but is not guaranteed to compute the maximally-contained plan.
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The �rst theoretical investigations of the problem concentrated on showing a

bound on the size of the resulting query plan [22,26]. These results estab-

lish the complexity of the rewriting problem, but yield only non-deterministic

algorithms for its solution. As stated above, the algorithms in [20,23] pro-

pose heuristics for searching the space of candidate plans. Huyn [19] proposed

\pseudo-equivalent" rewritings in the case that no equivalent rewritings exist.

These ideas were used in [25] to give an algorithm for rewriting conjunctive

queries given source relations described by source descriptions.

The problem of �nding query plans in the presence of binding-pattern limita-

tions is considered in [26], but only an algorithm for �nding an equivalent plan

is presented. Later, Kwok and Weld [20] showed that if we restrict our plans

to be sets of conjunctive queries, then there may not be a �nite maximally-

contained rewriting in the presence of binding-pattern limitations. More com-

plex query capabilities in sources are considered in [24]. Complex capabilities

are modeled by the ability of a source to answer a potentially in�nite number

of conjunctive queries. Hence, [24] considered how to answer queries given an

in�nite number of conjunctive source descriptions.

Several authors have considered the problem of rewriting queries using views

for query optimization [32,6,30]. In this context, one usually requires a query

plan that is equivalent to the original query. The algorithms described in [6,30]

also explain how to combine the search for query plans with a traditional

System-R style query optimizer. Another use of rewriting queries using views

is explored in [2] for the purpose of deciding which cached answers can be

used by a mediator. The algorithms described in [2] are aimed at capturing

frequently occurring cases which can be detected e�ciently.

1.2 Organization of the article

The article is organized as follows. Section 2 explains the basic terms we use

in the discussion. Section 3 describes the construction of inverse rules, which

is the basis for all the algorithms we describe in the article. This section also

shows that the construction of the inverse rules su�ces in order to compute

maximally-contained query plans for recursive queries. Sections 4 and 5 de-

scribe the extensions of the algorithm in the presence of functional and full

dependencies, respectively. Section 6 describes the algorithm for the case of

limitations on binding patterns. The inverse rules described in Section 3 use

a set of function symbols. In Section 7 we show how these function symbols

can be removed, to obtain query plans that are datalog queries.

This article is the full version of two previously published conference pa-

pers [10,12]. In addition to containing the full proofs of the theorems, this
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article (1) extends [12] to full dependencies and (2) shows that recursive

plans are necessary when functional dependencies are present in the mediated

schema.

2 Preliminaries

2.1 Relations and queries

We model the mediated schema and the data sources by sets of relations. For

every relation, we associate an attribute name to each of its arguments. For

example, the attribute names of the binary relation author may be Paper and

Person. For a tuple t of a relation r with attribute A, we denote by t[A] the

value of the attribute A in t.

We consider datalog queries over sets of relations. A datalog query is a set of

function-free Horn rules of the form

p( �X) :� p1( �X1); : : : ; pn( �Xn)

where p, and p1; : : : ; pn are predicate names, and �X , �X1; : : :, �Xn are tuples of

variables or constants. The head of the rule is p( �X), and its body is p1( �X1), : : :,

pn( �Xn). Each pi( �Xi) is a subgoal of the rule. We require that the rules be safe,

i.e., every variable in the head of a rule must also occur in the body of the rule.

A predicate is an intensional database predicate, or IDB predicate, in a query

Q if it appears as the head of some rule in Q. Predicates not appearing in any

head are extensional database predicates, or EDB predicates. We assume that

every query has an IDB predicate q, called the query predicate, that represents

the result of Q.

The input of a datalog query Q consists of a database D storing extensions of

all EDB predicates in Q. Given such a database D, a bottom-up evaluation is

one in which we start with the ground EDB facts in D and apply the rules to

derive facts for the IDB predicates. The output of Q, denoted Q(D), is the set

of ground facts generated for the query predicate in the bottom-up evaluation.

As an intermediate result of our algorithms, we will construct datalog pro-

grams with function symbols. That is, some of the arguments in the bodies

or the heads of the rules are functional terms. When datalog queries con-

tain function symbols we will refer to them as logic queries. In general, the

bottom-up evaluation of a logic query may not terminate. As it turns out,

we introduce function symbols in a controlled fashion, and in particular, the

evaluation of our logic queries is guaranteed to terminate. Furthermore, we
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show in Section 7 how to remove the function symbols.

Given a query, we can de�ne a dependency graph, whose nodes are the predicate

names appearing in the rules. There is an edge from the node of predicate pi
to the node of predicate p if pi appears in the body of a rule whose head

predicate is p. The query is recursive if there is a cycle in the dependency

graph. A conjunctive query is a single non-recursive function-free Horn rule.

A recursive datalog query can be seen as a �nite encoding of a potentially

in�nite set of conjunctive queries. We do not consider interpreted predicates

in this article (e.g., 6=, �, <).

2.2 Containment

A datalog query Q0 is contained in a datalog query Q if, for all databases

D, Q0(D) is a subset of Q(D). Datalog queries Q0 and Q are equivalent if Q0

and Q are contained in one another. The problem of determining whether a

datalog query Q0 is contained in a datalog query Q is in general undecidable

[28]. The problem remains decidable if either Q0 or Q are non-recursive [27,7].

In our discussion we use the following algorithm from [27] to test when a

union of conjunctive queries Q0 is contained in a recursive query Q. 3 First,

replace all variables in Q0 by distinct constants. Consider the database Dc

that contains exactly the tuples corresponding to the subgoals in the \frozen"

bodies of the rules in Q0. Dc is called the canonical database of Q0. Evaluate

Q on the canonical database. Q0 is contained in Q if and only if the \frozen"

heads of the rules in Q0 are contained in Q(Dc).

Example 1 Let Q be the following datalog query:

Q: q(X;Y ) :� edge(X;Z); edge(Z; Y ); black (Z)

q(X;Y ) :� edge(X;Z); black (Z); q(Z; Y )

To determine whether the non-recursive datalog query

Q0: q(X;Y ) :� edge(X;Z); edge(Z; Y ); black (X); black (Z)

q(X;Y ) :� edge(X;V ); edge(V;W ); edge(W;Y ); black (V );

black (W )

is contained in Q, we replace the variables in the two rules by distinct con-

stants:

q(c1; c3) :� edge(c1; c2); edge(c2; c3); black (c1); black (c2)

3 Recall that every non-recursive datalog program can be translated into an equiv-

alent union of conjunctive queries.
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q(c4; c7) :� edge(c4; c5); edge(c5; c6); edge(c6; c7); black (c5);

black (c6)

This yields the following canonical database:

edge

hc1; c2i, hc2; c3i, hc4; c5i, hc5; c6i, hc6; c7i

black

hc1i, hc2i, hc5i, hc6i

The output of datalog query Q on the canonical database is hc1; c3i, hc4; c6i,

hc5; c7i, and hc4; c7i. Because this output contains hc1; c3i and hc4; c7i, Q
0 is

contained in Q.

2.3 Functional dependencies

An instance of a relation p satis�es the functional dependency A1; : : : ; An ! B

if for every two tuples t and u in p with t:Ai = u:Ai for i = 1; : : : ; n, also

t:B = u:B. We will abbreviate a set of attributes A1; : : : ; An by �A.

When the relations satisfy a set of functional dependencies �, we re�ne our

notion of containment to relative containment : QueryQ0 is contained in query

Q relative to �, denoted Q0 �� Q, if for each database D satisfying the

functional dependencies in �, Q0(D) � Q(D).

In order to decide containment of conjunctive queries in the presence of func-

tional dependencies, Aho et al. [3] show that it su�ces to precede the con-

tainment algorithm by applying the chase algorithm to the contained query.

A step in applying the chase to the body of a conjunctive query Q is the

following. If the functional dependency �A ! B holds for a relation p, and a

conjunctive query Q has two subgoals of p, g1 and g2, with the same variables

or values for the attributes �A, and g1 has a variable X for attribute B, then

we replace the occurrences of X in Q by the value or variable for B in g2.

2.4 Full dependencies

Functional dependencies are a special form of a more general kind of depen-

dencies, called full dependencies 4 . A full dependency � is a �rst-order formula

of the form

4 Full dependencies include also two other well-known dependencies, namely mul-

tivalued dependencies and join dependencies.
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8 �X [ �( �X))  ( �Y ) ]

where �( �X) is a conjunction of relations and equality atoms with variables
�X,  ( �Y ) is a relation or an equality atom with variables �Y , and �Y � �X. If  

is an equality atom, then � is called an equality generating dependency. If  

is a relation, then � is called a tuple generating dependency. In examples, we

will omit the universal quanti�cation for the sake of brevity. A functional de-

pendency A! B of relation p(A;B;C) is an equality generating dependency

because it can be written in the form

8X 8Y 8Z 8Y 0 8Z 0 [ p(X;Y;Z) ^ p(X;Y 0Z 0)) Y = Y 0 ].

Query Q0 is contained in query Q relative to a set of full dependencies �,

denoted Q0 �� Q, if for each database D satisfying the full dependencies in

�, Q0(D) � Q(D).

2.5 Data sources and query plans

The schema of a mediator includes a set of virtual relations. The relations

in the mediator are virtual because their extensions are not actually stored.

Their role is to provide the user a uniform interface to a multitude of data

sources. We refer to the schema of the mediator as the mediated schema. The

actual data is stored in a set of external data sources. We model each source

by containing the extension of a source relation. The set of names of source

relations is disjoint from the set of names of relations in the mediated schema.

To answer user queries, the mediator must also have a mapping between the

relations in the mediated schema and source relations. We follow the approach

taken in [23,20,11], where the mappings (a.k.a. source descriptions) are spec-

i�ed by a set of conjunctive queries, one for every source relation. The pred-

icates in the heads of the conjunctive queries are source relations, and the

predicates in their bodies are relations in the mediated schema. The meaning

of such a mapping is that all the tuples that are found in the data source

satisfy the query over the mediated-schema relations. 5

Example 2 Consider a mediated schema that includes the relations parent,

male and female. The source descriptions below say that the source relations

s1 and s2 store the father and mother relation, respectively.

s1(X;Y ) :� parent(X;Y ); male(X)

5 Several authors have distinguished the case in which the source contains all the

tuples that satisfy the query from the case in which some tuples may be missing

from the source [13,14,9,21,1]. For our discussion this distinction does not matter.
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s2(X;Y ) :� parent(X;Y ); female(X)

Given a query Q from the user, the mediator needs to formulate a query plan,

which is a query that bottoms out in the source relations and produces answers

to Q. A query plan is a set of Horn rules whose EDB predicates include only

the source relations. The expansion Pexp of a query plan P is obtained from P

by replacing all source relations with their corresponding source descriptions.

Existentially quanti�ed variables in source descriptions are replaced by new

variables in the expansion.

Example 3 The following query plan determines all grandparents of ann

from the sources described in Example 2:

q(X) :� p(X;Z); p(Z; ann)

p(X;Y ) :� s1(X;Y )

p(X;Y ) :� s2(X;Y )

The expansion of this query plan is the following datalog query:

q(X) :� p(X;Z); p(Z; ann)

p(X;Y ) :� parent(X;Y ); male(X)

p(X;Y ) :� parent(X;Y ); female(X)

2.6 Equivalent vs. maximally-contained query plans

A query plan P is contained in a datalog query Q if Pexp is contained in Q,

and is equivalent to Q if Pexp is equivalent to Q. A query plan P is contained

in another query plan P 0, if Pexp is contained in (P 0)exp. A query plan P is

maximally-contained in a datalog queryQ if P is contained inQ, and for every

query plan P 0 that is contained in Q, P 0 is already contained in P. Contain-

ment and maximal containment relative to a set of functional dependencies �

or relative to a set of full dependencies � is de�ned accordingly. Note that the

notion of maximal containment is relative to a �xed set of source relations.

Ideally, the mediator would try to �nd a query plan that is equivalent to

the user query. However, in practice we may not have su�cient data sources

to completely answer the user query. Hence, the mediator tries to �nd the

maximally-contained query plan. In a sense, the maximally-contained query

plan produces all the answers to the query that could be retrieved from the

available sources. Of course, if there exists a plan that is equivalent to the user

query then it will be a maximally-contained plan.

In this article we focus on �nding maximaly-contained plans. As it turns out,
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in the cases we consider in this article, the maximally-contained query plan

may have to be a recursive datalog program. Furthermore, we show that if

the queryQ is recursive, then �nding an equivalent query plan is undecidable,

while �nding a maximally-contained query plan is decidable.

3 Inverse rules and recursive queries

In this section we �rst describe how to compute a set of inverse rules from

a given set of source descriptions. Intuitively, inverse rules can be viewed

as query plans for the predicates in the mediated schema. Inverse rules are

common to all the constructions we describe in this article. We then show

that the inverse rules themselves, together with a recursive datalog query Q

provide a maximally-contained plan for Q. It should be noted that previous

work considered the construction of query plans only for non-recursive datalog

queries. Finally, we show that the problem of �nding an equivalent query plan

for recursive queries is undecidable.

As explained below, in constructing the inverse rules we use function symbols.

These function symbols can later be eliminated, as we will show in Section 7.

We use the following set of function symbols in inverse rules. For every source

relation s with variables X1; : : : ;Xn in the body but not in the head of its

source description, we have a function symbol fs;i. The arity of the function

fs;i is the arity of s.

De�nition 4 (inverse rules) Let s be a source relation de�ned by the source

description

s( �X) :� p1( �X1); : : : ; pn( �Xn).

Then for j = 1; : : : ; n,

pj( �X
0
j) :� s( �X)

is an inverse rule of s, denoted s�1. We modify �Xj to obtain the tuple �X 0
j as

follows: if X is a constant or is a variable in �X, then X is unchanged in X 0
j .

Otherwise, X is one of the variables Xi appearing in the body of s but not in
�X, and X is replaced by fs;i( �X) in �X 0

j .

We denote the set of inverse rules of the source descriptions in V by V�1.

Example 5 The inverse of the source descriptions

s1(X;Y ) :� edge(X;Z); edge(Z;W ); edge(W;Y )

s2(X) :� edge(X;Z)
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is the following set of rules (to simplify notation, we use f1 for fs1;1, f2 for

fs1;2, and f3 for fs2;1):

edge(X; f1(X;Y )) :� s1(X;Y )

edge(f1(X;Y ); f2(X;Y )) :� s1(X;Y )

edge(f2(X;Y ); Y ) :� s1(X;Y )

edge(X; f3(X)) :� s2(X)

Given a datalog query Q and a set of conjunctive source descriptions V, the

construction of the query plan is as follows. We delete all rules from Q that

contain mediated schema relations that do not appear in any of the source

descriptions. To the resulting query, denoted as Q�, we add the rules of V�1,

and call the query so obtained (Q�;V�1). Notice that the EDB predicates of

the remaining rules of Q are IDB predicates in (Q�;V�1), because they appear

in heads of the rules in V�1. Because naming of IDB predicates is arbitrary, one

could rename the IDB predicates in (Q�;V�1) so that their names di�er from

the names of the corresponding EDB predicates in Q. For ease of exposition,

we will not do it here.

Example 6 Consider the recursive query

Q: q(X;Y ) :� edge(X;Y )

q(X;Y ) :� edge(X;Z); q(Z; Y )

which determines the transitive closure of the relation edge. Assume there is

only one data source available:

s(X;Y ) :� edge(X;Z); edge(Z; Y )

Source s stores endpoints of paths of length two. Just using this source, there

is no way to determine the transitive closure of the relation edge. The best

one can hope to achieve is to compute the endpoints of paths of even lengths.

Relation edge, the only EDB predicate in Q, appears in the description of s.

Therefore, (Q�;V�1) is just Q with the rules of s�1 added:

(Q�;V�1): q(X;Y ) :� edge(X;Y )

q(X;Y ) :� edge(X;Z); q(Z; Y )

edge(X; f(X;Y )) :� s(X;Y )

edge(f(X;Y ); Y ) :� s(X;Y )

(Q�;V�1) indeed yields all endpoints of paths of even length in its result. For

example, assume that an instance of the EDB predicate edge in Q represents

the following graph:
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G:
h h h h h- - - -

a b c d e

(Q�;V�1) introduces three new constants, named f(a; c), f(b; d), and f(c; e).

The IDB predicate edge in V�1 represents the following graph:

G0:
h h h h h

h h h

�
�
���

�
�
���

�
�
���@

@
@@R

@
@
@@R

@
@
@@R

a b c d e

f(a,c) f(b,d) f(c,e)

Q� computes the transitive closure of G0. Notice that the pairs in the transitive

closure of G0 that do not contain any of the new constants are exactly the

endpoints of paths of even length in the original graph G.

The query (Q�;V�1) is a logic query because the inverse rules contain function

symbols. In order to show that it is the maximally-contained plan of Q, we

�rst show that the evaluation of (Q�;V�1) will terminate on every database.

The key observation is that function symbols are only introduced in inverse

rules. Because inverse rules are not recursive, no terms with nested function

symbols can be generated.

Lemma 7 For every datalog query Q, every set of conjunctive source de-

scriptions V, and all �nite instances of the source relations, the logic query

(Q�;V�1) has a unique �nite minimal �xpoint. Furthermore, bottom-up eval-

uation is guaranteed to terminate, and produces this unique �xpoint.

PROOF. Q� is recursive, but does not introduce function symbols. On the

other hand, V�1 introduces function symbols, but is not recursive. Moreover,

the IDB predicates of V�1 depend only on the EDB predicates. Therefore, ev-

ery bottom-up evaluation of (Q�;V�1) will necessarily progress in two stages.

In the �rst stage, the extensions of the IDB predicates in V�1 are determined.

The second stage will then be a standard datalog evaluation of Q�. Because

datalog queries have unique �nite minimal �xpoints, this proves the claim. 2

Given extensions for its EDB predicates, a logic query might produce tuples

containing function symbols in its result. Because the extensions of EDB pred-

icates do not contain any function symbols, no datalog query produces tuples

in its result containing function symbols. Hence, in order to compare between

the result of evaluating Q to that of evaluating (Q�;V�1) on a set of data
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sources, we need to de�ne a �lter that gets rid of all extraneous tuples with

functional terms. If D is a set of sources containing tuples of the EDB predi-

cates of a query plan with function symbols P, then let P(D)# be the set of

all tuples in P(D) that do not contain function symbols. Let P# be the plan

that given the sources D computes P(D)#.

The following theorem shows that the simple construction of adding the inverse

rules to Q� yields a logic query that uses the source relations in the best

possible way. That is, after discarding all tuples containing function symbols,

the result of (Q�;V�1) is contained in Q. Moreover, the result of every query

plan that is contained in Q is already contained in (Q�;V�1).

Theorem 8 For every datalog query Q and every set of conjunctive source

descriptions V, the query plan (Q�;V�1)# is maximally-contained in Q. More-

over, (Q�;V�1) can be constructed in time polynomial in the size of Q and

V.

PROOF. First we prove that (Q�;V�1)# is contained inQ. Let E1; : : : ; En be

instances of the EDB predicates in Q. E1; : : : ; Em determine the instances of

the source relations in V which in turn are the EDB predicates of (Q�;V�1).

Assume that (Q�;V�1) produces a tuple t that does not contain any func-

tion symbols. Consider the derivation tree of t in (Q�;V�1). All the leaves

are source relations because source relations are the only EDB predicates of

(Q�;V�1). Removing all leaves from this tree produces a tree with the original

EDB predicates fromQ as new leaves. Because the instances of the source rela-

tions are derived from E1; : : : ; En, there are constants in E1; : : : ; En such that

consistently replacing function terms with these constants yields a derivation

tree of t in Q. Therefore, (Q�;V�1)# is contained in Q.

Let P be an arbitrary query plan contained in Q. We have to prove that P is

also contained in (Q�;V�1). Let cs be an arbitrary conjunctive query generated

by P. If we can prove that cexps is contained in (Q�;V�1), then P is contained

in (Q�;V�1), which proves the claim. Let Dc be the canonical database of

cexps . Because cexps is contained in Q, cexps (Dc) is contained in the output of Q

applied to Dc. Let c be the conjunctive query generated by Q that produces

cexps (Dc). Because all predicates of query c are also in cexps , and all predicates

in cexps appear in some source description, c is also generated by Q�. Because

cexps is contained in c, there is a containment mapping h from c to cexps [5].

Every variable Z in cexps that does not appear in cs is existentially quanti�ed

in some source description si(X1; : : : ;Xm) in cs. Let k be the mapping that

maps every such variable Z to the corresponding term fsi;j(X1; : : : ;Xm) used

in s�1i . Because Q� can derive c, Q� can also derive the more specialized

conjunctive query k(h(c)). Using rules in V�1, the derivation of k(h(c)) in Q�

can be extended to a derivation of a conjunctive query c0 that only contains

13



source relations. The identity mapping is a containment mapping from c0 to

cs. This proves that P is contained in (Q�;V�1).

(Q�;V�1) can be constructed in time polynomial in the size of Q and V,

because every subgoal in a source description in V corresponds to exactly one

inverse rule in V�1. 2

As stated earlier, if there exists an equivalent plan for a query Q, it will be

a maximally-contained plan. However, since equivalence of datalog programs

is undecidable in general, we cannot test whether (Q�;V�1) is an equivalent

plan by testing whether it is equivalent to Q. Moreover, the following theorem

shows that the problem of whether there exists a query plan equivalent to Q

is undecidable.

Theorem 9 Given a datalog query Q and conjunctive source descriptions, it

is undecidable whether there is a query plan P equivalent to Q.

PROOF. Let Q1 and Q2 be two arbitrary datalog queries. We show that a

decision procedure for the above problem would allow us to decide whether

Q1 is contained in Q2. Because the containment problem for datalog queries

is undecidable [28], this proves the claim. Without loss of generality we can

assume that there are no IDB predicates with the same name in Q1 and Q2,

and that the query predicates in Q1 and Q2, named q1 and q2 respectively,

have arity m. Let Q be the datalog query consisting of all the rules in Q1 and

Q2, and of the rules

q(X1; : : : ;Xm) :� q1(X1; : : : ;Xm); e()

q(X1; : : : ;Xm) :� q2(X1; : : : ;Xm)

where e is a new zero-ary global relation. Furthermore, for every global relation

ei(X1; : : : ;Xki) in Q1 and Q2 (but not for e) assume there is a source relation

described by the source description

si(X1; : : : ;Xki) :� ei(X1 : : : ;Xki).

We show that Q1 is contained in Q2 if and only if there is a query plan P

equivalent to Q.

00 )00: Assume Q1 is contained in Q2. Then Q is equivalent to the query plan

P consisting of all the rules of Q2 with ei's replaced by the corresponding si's,

and the additional rule

q(X1; : : : ;Xm) :� q2(X1; : : : ;Xm).
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00 (00: Assume there is a query plan P equivalent to Q. Then for any instanti-

ation of the global relations, Q and Pexp yield the same result, especially for

instantiations where e is the empty relation, and where e contains the empty

tuple. If e is the empty relation then Q produces exactly the tuples produced

by Q2, and therefore Pexp does likewise. If e contains the empty tuple then

Q produces the union of the tuples produced by Q1 and Q2, and hence Pexp

produces this union. Because Pexp does not contain e, Pexp will produce the

same set of tuples regardless of the instantiation of e. It follows that Q2 is

equivalent to the union of Q1 and Q2. Therefore, Q1 is contained in Q2. 2

4 Mediated schemata with functional dependencies

In this section we consider the problem of generating a maximally-contained

plan for a query Q in the presence of functional dependencies in the mediated

schema. We begin by describing an algorithm for generating a maximally-

contained plan, and in the end of the section we show recursive plans may be

necessary in this context. That is, if we restrict ourselves to plans that are

unions of conjunctive queries, then we may not obtain all the possible answers

from the data sources.

We use the following example throughout this section to illustrate the di�-

culties introduced by functional dependencies and to present our algorithm.

Suppose we have the following relations in the mediated schema

conference(Paper,Conference),

year(Paper,Year),

location(Conference,Year,Location)

The relations describe the conference at which a paper was presented, the

publication year of a paper, and the location a conference was held at in a

given year. A paper is only presented at one conference and published in one

year. Also, in a given year a conference is held at a speci�c location. Therefore

we have three functional dependencies:

conference: Paper ! Conference

year: Paper ! Year

location: Conference, Year ! Location

Suppose we have the following data sources:

s1(P;C; Y ) :� conference(P;C); year(P; Y )

s2(P;L) :� conference(P;C); year(P; Y ); location(C; Y; L)
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s1 tells us in which conference and year a paper was presented, and s2 stores

the location of the presentation of a paper directly with the paper. Assume a

user wants to know where PODS '89 was held:

q(L) :� location(pods; 1989; L)

The following plan would answer the query:

q(L) :� s1(P; pods; 1989); s2(P;L)

Informally, the query plan proceeds as follows. It �rst �nds some paper pre-

sented at PODS '89 using s1, and then �nds the location of the conference this

paper was presented at using s2. This plan is correct only because every paper

is presented at one conference and in one year. In fact, if these dependencies

would not hold, there would be no way of answering this query using the given

sources. It is also important to note that source relation s1 is needed in the

query plan even though the predicates in s1, conference and year, don't appear

in the query at all. Without functional dependencies, only source descriptions

that contain predicates appearing in the user query need to be considered [22].

In the following we are going to give a construction of query plans that is guar-

anteed to be maximally-contained in the given queries, even in the presence

of functional dependencies. As in the previous section, we begin by computing

the set of inverse rules, whose purpose is to recover tuples of the mediated-

schema relations from the source relations. The inverse rules for s1 and s2 in

our example are:

r1 : conference(P;C) :� s1(P;C; Y )

r2 : year(P; Y ) :� s1(P;C; Y )

r3 : conference(P; f1(P;L)) :� s2(P;L)

r4 : year(P; f2(P;L)) :� s2(P;L)

r5 : location(f1(P;L); f2(P;L); L) :� s2(P;L)

For example, rule r5 extracts from s2 that some conference in some year was

held in location L. Suppose that s1 stores the information that the paper

\Bottom-Up Beats Top-Down for Datalog" (henceforth abbreviated as data-

log) was presented at PODS '89, and s2 stores the information that \Bottom-

Up Beats Top-Down for Datalog" was presented in Philadelphia. The inverse

rules derive the following fats:

conference

hdatalog; podsi (r1)

hdatalog; f1(datalog; philadelphia)i (r3)

year

hdatalog; 1989i (r2)
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hdatalog; f2(datalog; philadelphia)i (r4)

location

hf1(datalog; philadelphia); f2(datalog; philadelphia); philadelphiai (r5)

The inverse rules don't take into account the presence of the functional de-

pendencies. For example, because of the functional dependency in relation

conference , Paper ! Conference, it is possible to conclude that the function

term f1(datalog; philadelphia) must actually be the same as the constant pods.

We model this inference by introducing a new binary relation e. The intended

meaning of e is that e(c1; c2) holds if and only if c1 and c2 must be equal under

the given functional dependencies. Hence, the extension of e includes the exten-

sion of = (i.e., for everyX, e(X;X)), and the tuples that can be derived by the

following chase rules (e( �A; �A0) is a shorthand for e(A1; A
0
1); : : : ; e(An; A

0
n)):

6

De�nition 10 (chase rules) Let �A! B be a functional dependency satis�ed

by a relation p in the mediated schema. Let �C be the attributes of p that are

not in �A;B. The chase rule corresponding to �A! B, denoted chase( �A! B),

is the following rule:

e(B;B0) :� p( �A;B; �C); p( �A0; B0; �C 0); e( �A; �A0).

We denote by chase(�) the set of chase rules corresponding to the functional

dependencies in �. In our example, the chase rules are

e(C;C 0) :� conference(P;C); conference(P 0; C 0); e(P;P 0)

e(Y; Y 0) :� year(P; Y ); year(P 0; Y 0); e(P;P 0)

e(L;L0) :� location(C; Y; L); location(C 0; Y 0; L0); e(C 0C 0);

e(Y; Y 0)

The chase rules allow us to derive the following facts in relation e:

e

hf1(datalog; philadelphia); podsi

hf2(datalog; philadelphia); 1989i

The extension of e is re
exive by construction, and is symmetric because of the

symmetry in the chase rules. To guarantee that e is an equivalence relation,

it is still needed to enforce transitivity of e. The following rule, denoted by T ,

is su�cient for guaranteeing transitivity of relation e:

6 We only describe relation e to be re
exive for ease of exposition. For every rule r

having a subgoal e(X; Y ) in its body, we could add a modi�ed version of rule r with

subgoal e(X; Y ) removed and X replaced by Y . The resulting set of rules wouldn't

require e to be re
exive.
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e(X;Y ) :� e(X;Z); e(Z; Y ).

The �nal step in the construction is to rewrite query Q in a way that it can

use the equivalences derived in relation e. We de�ne the recti�ed query �Q by

modifying Q iteratively as follows:

(i) If c is a constant in one of the subgoals of Q, we replace it by a new

variable Z, and add the subgoal e(Z; c).

(ii) If X is a variable in the head of Q, we replace X in the body of Q by a

new variable X 0, and add the subgoal e(X 0;X).

(iii) If a variable Y that is not in the head of Q appears in two subgoals of Q,

we replace one of its occurrences by Y 0, and add the subgoal e(Y 0; Y ).

We apply the above steps until no additional changes can be made to the

query. In our example query Q would be rewritten to

�q(L) :� location(C; Y; L0); e(C; pods); e(Y; 1989); e(L0; L);

Note that evaluating query �q on the reconstructed relations of the mediated

schema and the derived equivalence relation e yields the desired result: PODS

'89 was held in Philadelphia.

Given a query q, a set of source descriptions V, and a set of functional depen-

dencies �, the constructed query plan includes �Q, the inverse rules V�1, the

chase rules chase(�) and the transitivity rule T . The following theorem shows

that this query plan is maximally-contained in Q relative to �.

Theorem 11 Let � be a set of functional dependencies, V a set of conjunctive

source descriptions, and let Q be a conjunctive query over the relations in the

mediated schema. Let R denote the set of rules V�1 [ chase(�) [ T . Then,

( �Q;R)# is maximally-contained in Q relative to �. Furthermore, ( �Q;R) can

be constructed in time polynomial in the size of Q, V, and �. 2

PROOF. The key to the proof is to show that for every conjunctive query

plan P �� Q, P
exp �� ( �Q;R)exp. Because recursive query plans can be seen as

an encoding of the union of in�nitely many conjunctive query plans, it su�ces

to prove the claim for all conjunctive query plans. We prove the following

statement by induction on k: if Q is a query, P is a conjunctive query plan,

and e1; : : : ; ek is a sequence of queries with e1 = Pexp, ek � Q, and ei+1 results

from ei by applying a chase step, then Pexp �� ( �Q;R)exp. This would prove

that ( �Q;R) is maximally-contained in Q relative to �.

For k = 1, Pexp is contained in Q. As shown in Theorem 8, this implies that

Pexp is contained in (Q;V�1)exp. It follows that Pexp is contained in ( �Q;R)exp

relative to �.
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For the induction step, let k > 1 and assume ek�1 6� q. Let �A! B be the func-

tional dependency that holds for relation p and that is applied from ek�1 to ek.

Then ek�1 contains two subgoals of p, g1 and g2, with the same values/variables

for the attributes in �A, and g1 contains a variable X for attribute B that is

replaced by some value/variable in ek. Let h be the containment mapping [5]

that shows that Q contains ek. Replace every value/variable Xi in an argu-

ment position in Q that is mapped by h to an argument position in ek that

used to be variable X in ek�1 by a new variable X 0
i. For each of the new

variables X 0
i, add two subgoals of p to Q with the identical new variables for

the corresponding attributes �A, Xi and X
0
i for attribute B respectively, and

new variables for the remaining attributes. We can now �nd a containment

mapping from query Q0 to query ek�1. This shows that ek�1 is contained in

q0. Therefore, Pexp � e1; : : : ; ek�1 is a chase sequence with ek�1 � Q0. By the

induction hypothesis we have that Pexp � ( �Q0;R)exp. Using the chase rule

chase( �A ! B), the transitivity rule, and the re
exivity of relation e, we can

show that ( �Q0;R) � ( �Q;R). It follows that Pexp �� ( �Q;R)exp.

Query �Q contains all subgoals in q, and at most as many additional subgoals of

e as the sum of all arities of the subgoals in Q. Also, there are as many inverse

rules as there are subgoals in all source descriptions in V together. Finally,

there are exactly as many chase rules as there are functional dependencies in

�. We can conclude that ( �Q;R) can be constructed in time polynomial in the

size of Q, V and �. 2

We showed that recursive query plans are expressive enough to extract the

maximal amount of information from the data sources even in the presence of

functional dependencies. Still, one might ask whether it is somehow possible to

do without recursion in the plans. The following example shows that recursion

is really needed in order not to miss any answers.

Example 12 Suppose we have the following relation in the mediated schema

schedule(Airline,Flight no,Date,Pilot,Aircraft)

which represents the pilot that is scheduled for a certain 
ight, and the aircraft

that is used for this 
ight. Assume we have the following functional dependen-

cies on the relations in the mediated schema

Pilot ! Airline and

Aircraft ! Airline

expressing that pilots work for only one airline, and that there is no joint

ownership of aircraft between airlines. The following data source is available:

s3(D;P;C) :� schedule(A;N;D;P;C)
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s3 records on which date which pilot 
ies which aircraft. Assume a user asks

for pilots that work for the same airline as Mike:

q(P ) :� schedule(A;N;D;mike;C); schedule(A;N 0;D0; P; C 0)

Source s3 doesn't record the airlines that pilots work for. Nonetheless, using

the functional dependencies of relation schedule, conclusions can be drawn on

which pilots work for the same airline as Mike. For example, if both Mike

and Ann are known to have 
own aircraft #111, then Ann works for the

same airline as Mike because of the functional dependency Aircraft ! Airline.

Moreover, if Ann is known to have 
own aircraft #222, and John has 
own

aircraft #222 then Ann and John work for the same airline because of the

second functional dependency. Hence, we can infer that John and Mike work

for the same airline. In general, the query plan Pn given by

qn(P ) :� s3(D1;mike;C1); s3(D2; P2; C1); s3(D3; P2; C2);

s3(D4; P3; C2); : : : ; s3(D2n�2; Pn; Cn�1);

s3(D2n�1; Pn; Cn); s3(D2n; P; Cn)

is contained in the user query for each n. Moreover, each Pn is not contained

in any shorter query plan. This means that any non-recursive query plan with

a �xed number of subgoals cannot be maximally-contained in the user query.

5 Full dependencies

In this section we generalize the algorithm of the previous section to arbitrary

full dependencies. The added expressive power of full dependencies allows, for

example, to express constraints between di�erent relations. As an example,

assume that United Airlines as a rule always uses one speci�c aircraft for

every connection, in both directions. This can be expressed by the following

full dependencies:

schedule(ua;N;D;P;C) ^ schedule(ua;N;D0; P 0; C 0) ) C = C 0


ight(ua;N;F; T ) ^ 
ight(ua;N 0; T; F ) ^

schedule(ua;N;D;P;C) ^ schedule(ua;N 0;D0; P 0; C 0) ) C = C 0

The �rst full dependency expresses that United Airlines operates only one

aircraft for every 
ight number. The second full dependency states that the

aircraft used in both directions are the same.

The key to generalizing our algorithm is to de�ne chase rules for these more

general dependencies. Let � be a full dependency. The recti�ed full dependency
�� can be obtained from � by rectifying the antecedent of its implication using
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the same procedure as for rectifying queries presented in Section 4. For exam-

ple, the recti�ed version of the �rst full dependency above is the following full

dependency:

schedule(A;N;D;P;C) ^ schedule(A0; N 0;D0; P 0; C 0)^

A = ua ^A0 = ua ^N = N 0 ) C = C 0

For every full dependency there is an equivalent recti�ed full dependency.

Therefore, it su�ces to de�ne generalized chase rules for recti�ed full depen-

dencies only.

De�nition 13 (generalized chase rules) Let

8 �X [ p1( �X1) ^ : : : ^ pn�1( �Xn�1) ) pn( �Xn) ]

be a recti�ed full dependency, where p1; : : : ; pn are either mediated-schema

relations or equality atoms. The generalized chase rule corresponding to this

full dependency is the following rule:

�pn( �Xn) :� �p1( �X1); : : : ; �pn�1( �Xn�1).

If pi is a mediated-schema relation, then �pi is pi. Otherwise, pi is an equality

atom Yi = Zi, and then �pi is de�ned to be e(Yi; Zi).

We denote by chase(�) the set of generalized chase rules corresponding to

the full dependencies in �. The generalized chase rule corresponding to the

recti�ed full dependency mentioned above is the following rule:

e(C;C 0) :� schedule(A;N;D;P;C); schedule(A0; N 0;D0; P 0; C 0);

e(A;ua); e(A0; ua); e(N;N 0)

Note that for functional dependencies, generalized chase rules are identical to

the corresponding chase rules de�ned in Section 4. To generate a maximally-

contained plan in the presence of full dependencies, we follow the same algo-

rithm as in Section 4, except that we replace the chase rules by the generalized

chase rules. The following theorem generalizes Theorem 11.

Theorem 14 Let � be a set of full dependencies, V a set of conjunctive source

descriptions, and let Q be a query over the relations in the mediated schema.

Let R denote the set of rules V�1[chase(�)[T . Then, ( �Q;R)# is maximally-

contained in Q relative to �. Furthermore, ( �Q;R) can be constructed in time

polynomial in the size of Q, V, and �. 2

The proof of the theorem is similar to that of Theorem 11, noting that in the

presence of full dependencies, it also su�ces to precede a containment test by

the chase algorithm.
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The dependencies that we consider in this chapter are called full dependencies

because all the variables that appear on the right hand side of the implication

in a dependency must already occur on the left hand side. This restrictions is

essential. The following dependency is not a full dependency:


ight(A;N;F; T ) ) 9N 0 
ight(A;N 0; T; F )

This kind of dependency is usually refered to as an inclusion dependency be-

cause it asserts that the set of values appearing for some attribute is included

in the set of values appearing for some other attribute. The dependency ex-

presses that if an airline o�ers a 
ight between two cities, then the airline

o�ers the 
ight in both directions. If we allowed this kind of dependency, the

corresponding chase rule would be


ight(A; f(A;N;F; T ); T; F ) :� 
ight(A;N;F; T ).

But this rule is recursive and introduces new function terms. Therefore, naive

bottom-up evaluation of a query containing this rule wouldn't terminate. The

question of whether it is possible to build the maximally-contained query plan

in the presence of general | including non-full | dependencies remains open.

6 Limitations on binding patterns

The last case we consider in this article is the presence of limitations on access

to data sources. In practice, some information sources cannot answer arbitrary

atomic queries on the relation they store. In particular, the data source may

require that some of the arguments of its relations be given as input. To

model source capabilities, we attach to each source relation an adornment

(see [31], Chap. 12), specifying which binding patterns the source supports. 7

An adornment of a source description of s is a string of b's and f 's of length n,

where n is the arity of s. The meaning of the adornment is that the source only

supports queries in which the arguments with b adornments are bound. The

other arguments may be either bound or free. For example, the adornment sbf

means that the �rst argument must be bound in queries on s. We de�ne an

executable query plan as follows.

De�nition 15 (executable query plan) Let V be a set of source descrip-

tions with binding adornments, and let P be the following conjunctive query

plan:

q( �X) :� s1( �X1); : : : ; sn( �Xn)

7 For simplicity of exposition, we assume that each source relation has a single

adornment.
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Query plan P is executable if the following holds for i = 1; : : : ; n: let j be an

argument position of si that has a b adornment, and let � be the j'th element

in �Xi. Then, either � is a constant, or � appears in �X1 [ : : : [ �Xi�1.

A datalog query plan includes source relations and IDB relations. We model

the IDB relations as having the all-free adornment (i.e., fn, where n is the

relation's arity). A query plan P is executable if for every rule r 2 P, r is

executable.

In [26] it is shown that in the existence of binding pattern limitations, if we

are looking for a query plan that is equivalent to the user query, then there is a

bound on the number of literals we need to consider in candidate query plans.

However, as the following example, adapted from [20] shows, there may not

be a �nite maximally-contained query plan, if we restrict ourselves to query

plans without recursion.

Example 16 Consider the following sources:

s
f
1(X) :� podsPapers(X)

s
bf
2 (X;Y ) :� cites(X;Y )

sb3(X) :� awardPaper(X)

The �rst source stores PODS papers, the second is a citation database, but

only accepts queries where the �rst argument is bound, and the third source

will tell us whether a given paper won an award. Suppose our query is to �nd

all the award papers:

q(X) :� awardPaper(X)

For each n, the following is an executable conjunctive query plan Pn that is

contained in Q:

qn(Zn) :� s1(Z0); s2(Z0; Z1); : : : ; s2(Zn�1; Zn); s3(Zn):

Furthermore, for each n, Pn may produce answers that are not obtained by any

other Pi, for any i. Intuitively, a paper will be in the answer to Pi if the number

of links that need to be followed from a PODS paper is i. Therefore, there is no

bound on the size of the conjunctive queries in the maximally-contained plan.

We now show that by allowing recursive plans we can produce a maximally-

contained query plan. In our example, the construction will include a new

recursively-de�ned relation, papers, whose extension will be the set of all papers

that can be reached from the papers in s1. The construction will result in the

following plan.

papers(X) :� s
f
1(X)
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papers(X) :� papers(Y ); s
bf
2 (Y;X)

q(X) :� papers(X); sb3(X).

We now describe the construction for a given set of adorned source relations

V and a query Q. The recursive plan includes a unary relation dom whose

intended extension is the set of all constants that appear in the query or in

the source descriptions, or that can be obtained by iteratively querying the

sources. The rules involving dom are the following:

De�nition 17 (domain rules) Let s 2 V be a source relation of arity n.

Suppose the adornment of s says that the arguments in positions 1; : : : ; l need

to be bound, and the arguments l+1; : : : ; n can be free. Then for i = l+1; : : : ; n,

the following rule is a domain rule:

dom(Xi) :� dom(X1); : : : ; dom(Xl); s(X1; : : : ;Xn).

Also, if c is a constant appearing in the source descriptions in V or in query

q, then the fact dom(c) is a domain rule.

We denote by domain(V;Q) the set of rules described above for de�ning the

predicate dom. Notice that all domain rules are executable, and that relation

dom has adornment f . Every query plan P can be transformed to an exe-

cutable query plan by inserting the literal dom(X) before subgoals g in P

that have a variable X in an argument position that is required to be bound,

and X does not appear in the subgoals to the left of g in the body. The result-

ing query plan, denoted by Pexec , is executable. Moreover, we can show that

Pexec is equivalent to P. Combining this result with the one of the previous

section, we can conclude with the following theorem:

Theorem 18 Let � be a set of full dependencies, V a set of conjunctive source

descriptions with binding adornments, and let Q be a query over the relations

in the mediated schema. Then �Q[ chase(�) [ T [ domain(V;Q)[ (V�1)exec

is maximally-contained in Q relative to �. 2

PROOF. The following two observations are used in the proof:

(C1) If P is an executable conjunctive plan for Q, and X is a variable in

P, then any value that X can take during the execution of P will be in the

extension of the predicate dom.

(C2) If P is an executable conjunctive plan, and P 0 is a reordering of the

subgoals of P such that P 0 is also executable, then P and P 0 will produce the

same set of answers.
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The �rst claim is proved by induction on the place (i.e., subgoal number)

in which X appears for the �rst time in Q. The second claim is proved by

showing that whenever a variable is bound for the �rst time (in either Q or

P 0), it will be bound to a superset of the values it will have in the answer to

the plan.

We denote the plan �Q [ chase(�) [ T [ domain(V;Q) [ (V�1)exec by Pd.

The proof of the theorem proceeds as follows. From the previous theorems, we

know that if we ignore the binding pattern limitations and the appearances of

the predicate dom in Pd, then for every conjunctive plan P that is contained in

the query Q, there exists a conjunctive plan P 0, that is one of the conjunctive

queries encoded by Pd, such that P is contained in P 0. Hence, there is a

containment mapping  (that ignores the dom atoms in P 0) from the variables

of P 0 to the variables of P. To complete the proof, it su�ces to show that

during the execution of P 0 every subgoal g of P 0 will have at least the bindings

that the subgoal  (g) will have during the execution of P, and that are in the

�nal result of P (i.e., that are in the projection of the result of P on the

variables in g). If we consider the subgoal g, there are two options. In the �rst,

the binding of all the arguments of g come only from subgoals of the dom

predicate. In this case, observation C1 entails that we have all the necessary

bindings. The second option is that binding for some of the arguments of g

come from previous subgoals in P 0. But in this case observation C2 entails

that the ordering of the subgoals of P 0 does not change the result of P 0. 2

Finally, we note that the query plan can be constructed in time polynomial

in the size of Q, V and �.

7 Eliminating function symbols

Although in Section 3 we demonstrated an e�cient procedure to answer a

datalog query as well as possible given only source relations, it is desirable to

transform the constructed logic query to a datalog query that represents this

answer. This means that we are looking for a datalog query that is equivalent to

(Q�;V�1)#. The key observation underlying the construction of such a datalog

query is that there are only �nitely many function symbols in (Q�;V�1).

Because nested function expressions can never be generated using bottom-

up evaluation, it is possible, with a little bit of bureaucracy, to keep track

of function terms produced by (Q�;V�1) without actually generating tuples

containing function terms.

The transformation proceeds in a bottom-up fashion. Function terms like

f(X1; : : : ;Xk) in the IDB predicates of V�1 are eliminated by replacing them
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by the list of variables X1; : : : ;Xk that occur in them. The IDB predicate

names need to be annotated to indicate that X1; : : : ;Xk belonged to the func-

tion term f(X1; : : : ;Xk). For instance, in Example 6 the rule

edge(X; f(X;Y )) :� s(X;Y )

is replaced by the rule

edge h?;f(?;?)i(X;X; Y ) :� s(X;Y )

The annotation h?; f(?; ?)i represents the fact that the �rst argument in

edgeh?;f(?;?)i is identical to the �rst argument in edge , and that the second

and third argument in edgeh?;f(?;?)i combine to a function term with the func-

tion symbol f as the second argument of edge. If bottom-up evaluation of

(Q�;V�1) can yield a function term for an argument of an IDB predicate in

Q�, then a new rule is added with correspondingly expanded and annotated

predicates. The following de�nition states this construction formally. �X is a

shorthand for a list of variables or constants, and h��i is a shorthand for an

adornment. �X[i] and ��[i] stand for the ith position in �X and �� respectively.

De�nition 19 (predicate splitting) Let P be a query plan with function

symbols. We are going to de�ne a query plan Psplit that encodes exactly the

derivations in P, but doesn't contain function symbols. The transformation

from P to Psplit is called predicate splitting, because an IDB predicate in P

might be represented by several IDB predicates in Psplit .

� If

p(�1; : : : ; �n) :� s( �X)

is an inverse rule in P, then the query plan Psplit contains the rule

ph�1;:::;�ni(Y1; : : : ; Y
n) :� s( �X)

with 
0 = 0 and for i = 1; : : : ; n,

j�ij =

8><
>:

1 : if �i is a variable or a constant

arity of f : if �i is a function term with function symbol f;


i = 
i�1 + j�ij,

�i =

8>>><
>>>:

? : if �i is a variable or a constant

f(?; : : : ; ?| {z }
j�ij

) : if �i is a function term with function symbol f;

and for ki = 1; : : : ; j�ij:
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Y
i�1+ki =

8><
>:
�i : if �i is a variable or a constant

X : if �i is a function term with X as its kth argument.

� If

p( �X) :� p1( �X1); : : : ; pm( �Xm)

is a rule in P which is not an inverse rule, and

(i) the query plan Psplit contains rules that have p
h��1i
1 ; : : : ; ph

��mi
m as heads,

(ii) if for some i; j; i0; j0, �Xj [i] is identical to �Xj0 [i
0], then ��j[i] = ��j0[i

0], and

(iii) if for some i; j, �Xj [i] is a constant, then ��j[i] = ?,

then the query plan Psplit contains the rule

ph
��i( �Y ) :� p

h��1i
1 ( �Y1); : : : ; p

h��mi
m ( �Ym)

such that for all i, ��[i] = ��j[k] for some j; k with �X [i] = �Xj[k], and if a

variable X that occurs at �Xj [k] for some j; k occurs anywhere else, then the

variables and constants that represent X in �Yj are the same as the variables

and constants that represent X in the other places.

The following example shows this transformation.

Example 20 The logic query from example 6 is transformed to the following

datalog query. The lines indicate the stages in the generation of the datalog

rules.

edge h?;f(?;?)i
(X;X; Y ) :� s(X;Y )

edge hf(?;?);?i(X;Y; Y ) :� s(X;Y )

qh?;f(?;?)i(X;Y1; Y2) :� edgeh?;f(?;?)i(X;Y1; Y2)

qhf(?;?);?i(X1;X2; Y ) :� edgehf(?;?);?i
(X1;X2; Y )

qh?;?i(X;Y ) :� edgeh?;f(?;?)i
(X;Z1; Z2); q

hf(?;?);?i(Z1; Z2; Y )

qhf(?;?);f(?;?)i(X1;X2; Y1; Y2) :� edgehf(?;?);?i(X1;X2; Z); q
h?;f(?;?)i(Z; Y1; Y2)

qhf(?;?);?i(X1;X2; Y ) :� edgehf(?;?);?i
(X1;X2; Z); q(Z; Y )

qh?;f(?;?)i(X;Y1; Y2) :� edgeh?;f(?;?)i(X;Z1; Z2);

qhf(?;?);f(?;?)i(Z1; Z2; Y1; Y2)

The generated datalog query shows explicitly in which arguments the origi-

nal logic query was able to produce function terms. To the resulting datalog
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program we can apply standard optimizations. For example, if a predicate p

cannot contribute answers to the query (e.g., because in the predicate graph

of the program there is no path from p to the query predicate), then the rules

de�ning p can be deleted.

Example 21 In the dependency graph for the datalog query in example 20,

there are no paths from predicates qh?;f(?;?)i and qhf(?;?);f(?;?)i to q. Therefore,

these two predicates are irrelevant. The three rules de�ning the irrelevant pred-

icates can be dropped. The following is the resulting datalog query:

edgeh?;f(?;?)i
(X;X; Y ) :� s(X;Y )

edgehf(?;?);?i(X;Y; Y ) :� s(X;Y )

qhf(?;?);?i(X1;X2; Y ) :� edge hf(?;?);?i
(X1;X2; Y )

qhf(?;?);?i(X1;X2; Y ) :� edge hf(?;?);?i(X1;X2; Z); q(Z; Y )

qh?;?i(X;Y ) :� edge h?;f(?;?)i
(X;Z1; Z2); q

hf(?;?);?i(Z1; Z2; Y )

Because we keep track of function symbols in (Q�;V�1)split , we know that the

resulting instance of the query predicate q with all \?" adornment is exactly

the subset of the result of (Q�;V�1) that does not contain function symbols.

The following is therefore an immediate corollary of theorem 8.

Corollary 22 For every datalog query Q and every set of conjunctive source

descriptions V over the EDB predicates of Q, the query plan (Q�;V�1)split

is maximally-contained in Q. Moreover, if there exists a query plan that is

equivalent to Q, then (Q�;V�1)split is equivalent to Q.

8 Conclusions

We introduced a novel approach to creating information gathering plans, that

allows for recursive plans. We have shown that recursive plans enable us to

solve three open problems.We described algorithms for obtaining a maximally-

contained query plan in the case of recursive user queries, in the presence

of dependencies and in the presence of limitations on binding patterns in

the mediated schema. Our results are also of practical importance because

dependencies and limitations on binding patterns occur very frequently in

information sources in practice (e.g., the WWW).

Recursive information gathering plans have another important methodological

advantage. Query plans can be constructed by describing a set of inferences

that the mediator needs to make in order to obtain data from its sources. As
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a consequence, it is simpler to construct these plans, and we believe that it is

easier to extend our methods to other contexts.
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