
To appear in the Proceedings of the Fifteenth International Joint Confer-
ence on Arti�cial Intelligence, IJCAI-97. Nagoya, Japan, August 1997.

Recursive Plans for Information Gathering

Oliver M. Duschka

Department of Computer Science

Stanford University

Stanford, California 94305

U.S.A.

Alon Y. Levy

AT&T Laboratories

600 Mountain Avenue

Murray Hill, New Jersey 07974

U.S.A.

Abstract

Generating query-answering plans for informa-
tion gathering agents requires to translate a
user query, formulated in terms of a set of vir-
tual relations, to a query that uses relations
that are actually stored in information sources.
Previous solutions to the translation problem
produced sets of conjunctive plans, and were
therefore limited in their ability to handle in-
formation sources with binding-pattern limita-
tions, and to exploit functional dependencies in
the domainmodel. As a result, these plans were
incomplete w.r.t. sources encountered in prac-
tice (i.e., produced only a subset of the possible
answers). We describe the novel class of re-
cursive information gathering plans, which en-
ables us to settle two open problems. First, we
describe an algorithm for �nding a query plan
that produces the maximal set of answers from
the sources in the presence of functional de-
pendencies. Second, we describe an analogous
algorithm in the presence of binding-pattern re-
strictions in the sources, which was not possible
without recursive plans.

1 Introduction

The problem of information integration (a.k.a. informa-
tion gathering agents) has recently received considerable
attention due to the growing number of structured infor-
mation sources available online. Information integration
systems (e.g., the Internet Softbot [Etzioni and Weld,
1994], SIMS [Arens et al., 1996], TSIMMIS [Chawathe
et al., 1994], the InformationManifold [Levy et al., 1996],
Occam [Kwok and Weld, 1996], Infomaster [Duschka and
Genesereth, 1997b]) provide a uniform query interface
to the multiple information sources, thereby freeing the

Copyright c1997, International Joint Conferences on Arti�-
cial Intelligence, Inc. (www.ijcai.org).

user from having to locate the relevant sources, query
each one in isolation, and combine manually the infor-
mation from the di�erent sources.
Information integration systems are based on the fol-

lowing general architecture. The user interacts with a
uniform interface in the form of a set of virtual rela-
tion names that are used in formulating queries. The
actual data is stored in external sources (called the
source relations). In order for the system to be able
to answer queries, we must specify a mapping between
the virtual relations and the source relations. The
most common method to specify these mappings (em-
ployed in [Levy et al., 1996; Kwok and Weld, 1996;
Duschka and Genesereth, 1997b]) is to describe each
source relation as the result of a conjunctive query (i.e.,
a single Horn rule) over the virtual relations. For exam-
ple, an information source containing papers authored
by AI researchers would be described as follows:

db1(P;A) :� paper(P); author(P;A); ai(A).

The relations paper, author and ai are virtual relations
that can be used in formulating queries, and db1 is a
source relation.
Given a query from the user, formulated in terms of

the virtual relations, the system must translate it to a
query that mentions only the source relations, because
only those relations are actually available. That is, the
system needs to �nd a query expression, (or, a set of
conjunctive queries), that mentions only the source re-
lations, and is equivalent to the original query. The
new query is called a query plan (or a query rewriting),
and the translation problem is known as the problem of
rewriting queries using views. The views (a term used
in database systems to refer to prede�ned queries) are
the relations in the sources. The rewriting problem has
also been investigated in the database literature because
of its importance for query optimization and data ware-
housing [Yang and Larson, 1987; Chaudhuri et al., 1995;
Levy et al., 1995; Rajaraman et al., 1995; Qian, 1996;
Duschka and Genesereth, 1997a].
Previous results on the rewriting problem are of lim-

1

ited practical use for several reasons. First, they have
concentrated on showing a bound on the size of the
resulting query plan [Levy et al., 1995; Rajaraman et

al., 1995]. These results establish the complexity of the
rewriting problem, but yield only non-deterministic algo-
rithms for its solution. Second, they considered only the
problem of �nding an equivalent rewriting of the query
using the source relations. In practice, the collection of
available sources may not contain all the information
needed to answer a query, and therefore, we need to re-
sort to maximally-contained rewritings. A maximally-
contained rewriting provides all the answers that are
possible to obtain from the sources, but the expression
describing the rewriting may not be equivalent to the
original query. For example, if we only have the db1
source available, and our query asks for all papers by
Computer Science researchers, then the following is a
maximally-contained rewriting:

q(P; Y;A) :� db1(P; Y;A).

The third problem is that many sources encountered in
practice have limitations on the binding patterns they
support, or may satisfy certain functional dependencies.
As an example of binding-pattern restrictions, a name
server of an institution, holding the addresses of its em-
ployees, will not provide the list of all employees and
their addresses. Instead, it will provide the address for
a given name. In the case of equivalent rewritings, Ra-
jaraman et al. [Rajaraman et al., 1995] describe a bound
on the size of the query plans that need to be consid-
ered. However, Kwok and Weld [Kwok and Weld, 1996]

show that if we restrict our plans to be sets of conjunc-
tive queries, then there may not be a �nite maximally-
contained rewriting. As an example of a functional de-
pendency, the year of a conference functionally deter-
mines its location. The presence of functional dependen-
cies further complicates the rewriting problem because it
allows rewritings that are not valid otherwise. By ignor-
ing the functional dependencies, we may miss answers to
the query.
In this paper we introduce the new class of recursive

query plans for information gathering. Instead of plans
being only sets of conjunctive queries, they can now be
recursive sets of function-free Horn rules. Using recursive
plans, we are able to settle two open problems. First,
we describe an algorithm for �nding the maximally-
contained rewriting in the presence of functional de-
pendencies. Second, we describe an algorithm for �nd-
ing the maximally-contained rewriting in the presence
of binding-pattern restrictions, which was not possible
without recursive plans.
Another signi�cant advantage of our method is that

it is generative, rather than descriptive. Our algorithms
generate the rewriting in time that is polynomial in the
size of the query. In contrast, previous methods [Levy et

al., 1995; Rajaraman et al., 1995] describe the space of
possible candidate rewritings, and propose heuristics for
searching this space [Kwok and Weld, 1996; Levy et al.,
1996].1 These methods combine the process of �nding
a rewriting with the process of checking whether it is
equivalent to the original query (which is NP-hard). In
contrast, our method isolates the process of generating
the maximally-contained rewriting, which can be done
much more e�ciently.

2 Preliminaries

Relations and queries: Our representation of the do-
main and of the information sources includes a set of
relations. For every relation, we associate an attribute

name to each of its arguments. For example, the at-
tribute names of the binary relation author may be
Paper and Person. For a tuple t of a relation R, we
denote by t:A the value of the attribute A in t.
A function-free Horn rule is an expression of the form

p(�X) : �p1(�X1); : : : ; pn(�Xn);

where p, and p1; : : : ; pn are relation names, and
�X; �X1; : : : ; �Xn are tuples of variables and constants
such that any variable appearing in �X appears also in
�X1[: : :[�Xn. The head of the rule is p(�X), and its body
is p1(�X1); : : : ; pn(�Xn):The base relations of a set of Horn
rules are the relations that appear only in the bodies of
the rules and not in the heads (and therefore their exten-
sion includes only explicitly stored tuples). Given a set
of rules, we can de�ne a dependency graph, whose nodes
are the relations appearing in the rules. There is an arc
from the node of relation pi to the node of predicate p if
pi appears in the body of a rule whose head relation is
p. The rules are said to be recursive if there is a cycle
in the dependency graph.
A query is a set of function-free Horn rules. A con-

junctive query is a single non-recursive Horn rule. One
of the relations in the query is distinguished as the query
relation, and its extension is the answer to the query.

Query containment: In our discussion we will need
to compare between di�erent queries. We use the condi-
tion of containment to compare queries. Let us denote
by q(D) the result of evaluating query q on database D.
Given two queries q1 and q2, we say that q1 is contained
in q2 if for every database D, q1(D) � q2(D). The fun-
damental results on containment of conjunctive queries

1The algorithm in [Levy et al., 1996] checks whether the
plans can be executed given the binding-pattern restrictions,
but is not guaranteed to produce the maximally-contained
rewriting when these restrictions are present. The algorithm
in [Kwok and Weld, 1996] produces only conjunctive plans
that are guaranteed to adhere to the limitations on binding
patterns, but is not guaranteed to compute the maximally-
contained plan.

2

and function-free Horn rules are described in [Chan-
dra and Merlin, 1977; Sagiv and Yannakakis, 1980;
Shmueli, 1993].

Functional dependencies: An instance of a relation
p satis�es the functional dependency A1; : : : ; An ! B if
for every two tuples t and u in p with t:Ai = u:Ai for
i = 1; : : : ; n, also t:B = u:B. We will abbreviate a set of
attributes A1; : : : ; An by �A.

When the relations satisfy a set of functional depen-
dencies �, we re�ne our notion of containment to relative
containment: Query q1 is contained in query q2 relative

to �, denoted q1 �� q2, if for each database D satisfying
the functional dependencies in �, q1(D) � q2(D).

In order to decide containment of conjunctive queries
in the presence of functional dependencies, Aho et
al. [Aho et al., 1979] show that it su�ces to precede the
containment algorithm by applying the chase algorithm
to the contained query. The chase algorithm applies the
following transformation to the body of a conjunctive
query q until no changes can be made. If the functional
dependency �A ! B holds for a relation p, and a con-
junctive query q has two subgoals of p, g1 and g2, with
the same variables or values for the attributes �A, and
g1 has a variable X for attribute B, then we replace the
occurrences of X in q by the value or variable for B in
g2.

Modeling information sources and query plans:

The domain model of an information agent is a set of
virtual relations. The relations are virtual because they
are only meant to provide the user a uniform interface to
a multitude of information sources, and the agent does
not actually store the extensions of these relations. In
our discussion, we assume that a user query is a conjunc-
tive query over the virtual relations.2

The agent models the contents of the external informa-
tion sources by a set of source relations, that are disjoint
from the virtual relations. To answer user queries, the
agent must also have a mapping between the virtual and
source relations. The mappings, called source descrip-

tions, are speci�ed by a set of conjunctive queries, whose
bodies contain only virtual relations and their heads are
source relations. The meaning of such a mapping is that
all the tuples that are found in the information source
satisfy the query over the virtual relations.3 Given a
query q from the user, the agent needs to formulate a

2Our results apply also to the case in which user queries
are recursive [Duschka and Genesereth, 1997a].

3Several authors have distinguished the case in which the
source contains all the tuples that satisfy the query from the
case in which some tuples may be missing from the source [Et-
zioni et al., 1994; Levy, 1996]. For our discussion this distinc-
tion does not matter.

query plan, which is a query that bottoms out in the
source relations and produces answers to q. A query
plan is a set of Horn rules whose base predicates include
only the source relations.

Example 2.1: Consider a domainmodel where parent,
male and female are virtual relations. The mappings
below say that the source relations v1 and v2 store the
father and mother relation, respectively.

v1(X;Y) :� parent(X;Y); male(X)
v2(X;Y) :� parent(X;Y); female(X)

The following query plan determines all grandparents of
ann from the available sources:

answer(X) :� parent(X;Z); parent(Z; ann)
parent(X;Y) :� v1(X;Y)
parent(X;Y) :� v2(X;Y)

The expansion of a query plan P, denoted Pexp, is
obtained from P by replacing all source-relation literals
by their de�nitions. Existentially quanti�ed variables in
a source description are replaced by fresh variables in
the expansion.
A query plan P is maximally-contained in a query

q, relative to a set of functional dependencies �, if
Pexp �� q, and for every query plan P1, if P

exp
1 �� q

then Pexp
1 �� P

exp.

3 Functional Dependencies

We use the following example throughout this section to
illustrate the di�culties introduced by functional depen-
dencies and to present our algorithm. Suppose we have
the virtual relations

conference(Paper; Conference),
year(Paper; Y ear),
location(Conference; Y ear; Location)

describing the conference at which a paper was pre-
sented, the publication year of a paper, and the location
a conference was held at in a given year. A paper is only
presented at one conference and published in one year.
Also, in a given year a conference is held at a speci�c
location. Therefore we have three functional dependen-
cies:

conference: Paper! Conference

year: Paper! Y ear

location: Conference; Y ear! Location

We have the following information sources:

v1(P;C; Y) :� conference(P;C); year(P; Y)
v2(P;L) :� conference(P;C); year(P; Y);

location(C; Y; L)

v1 tells us in which conference and year a paper was
presented, and v2 stores the location of the presentation
of a paper directly with the paper. Assume a user wants
to know where IJCAI '91 was held:

3

q(L) :� location(ijcai; 1991; L)

The following plan would answer the query:

answer(L) :� v1(P; ijcai; 1991); v2(P;L)

The query plan �nds some paper presented at IJCAI '91
using v1, and then �nds the location of the conference
this paper was presented at using v2. This plan is correct
only because every paper is presented at one conference
and in one year. In fact, if these dependencies would
not hold, there would be no way of answering this query
using the sources. It is also important to note that view
v1 is needed in the query plan even though the predicates
in v1, conference and year, don't appear in the query q

at all. Without functional dependencies, only views that
contain predicates appearing in the user query need to
be considered [Levy et al., 1995].
In the following we are going to give a construction

of query plans that is guaranteed to be maximally-
contained in the given queries, even in the presence of
functional dependencies. The key to the construction is
a set of inverse rules, whose purpose is to recover tu-
ples of the virtual relations from the source relations. In
the following de�nition we use a set of function symbols;
for every source relation v with variables X1; : : : ; Xn in
the body but not in the head of the source description,
we have a function symbol fv;i. These function symbols
can later be removed from the query plan4 [Duschka and
Genesereth, 1997a].

De�nition 3.1: (inverse rules) Let v be a source de-

scription

v(�X) :� p1(�X1); : : : ; pn(�Xn).

Then for j = 1; : : : ; n,

pj(�X
0

j) :� v(�X)

is an inverse rule of v. We modify �Xj to obtain the tuple
�X0

j as follows: if X is a constant or is a variable in �X ,

then X is unchanged in X0

j . Otherwise, X is one of the

variables Xi appearing in the body of v but not in �X, and

X is replaced by fv;i(�X) in �X0

j .

We denote the set of inverse rules of the views in V by
V�1.
Continuing with our example, the inverse rules for v1

and v2 are:

r1 : conference(P;C) :� v1(P;C; Y)
r2 : year(P; Y) :� v1(P;C; Y)
r3 : conference(P; f1(P;L)) :� v2(P;L)
r4 : year(P; f2(P;L)) :� v2(P;L)
r5 : location(f1(P;L); f2(P;L); L) :� v2(P;L)

4It is not necessary to remove function symbols. Function
symbols are only introduced in inverse rules, and can never
become nested. Therefore, termination of bottom-up evalua-
tion is guaranteed even in the presence of function symbols.
Only tuples not containing function symbols are considered
answers to a query plan.

For example, rule r5 extracts from v2 that some con-
ference in some year was held in location L. Suppose
that v1 stores the information that the paper \Fuzzy
Dynamic Systems" was presented at IJCAI '91, and v2
stores the information that \Fuzzy Dynamic Systems"
was presented in Sydney. The inverse rules derive the
following facts:

conference

hfuzzy; ijcaii (with r1)
hfuzzy; f1(fuzzy; sydney)i (r3)

year

hfuzzy; 1991i (r2)
hfuzzy; f2(fuzzy; sydney)i (r4)

location

hf1(fuzzy; sydney); f2(fuzzy; sydney); sydneyi (r5)

The inverse rules don't take into account the presence
of the functional dependencies. For example, because
of the functional dependency in relation conference,
Paper ! Conference, it is possible to conclude that
the function term f1(fuzzy; sydney) must actually be
the same as the constant ijcai. We model this inference
by introducing a new binary relation e. The intended
meaning of e is that e(c1; c2) holds if and only if c1 and
c2 must be equal under the given functional dependen-
cies. Hence, the extension of e includes the extension
of = (i.e., for every X, e(X;X)), and the tuples that
can be derived by the following chase rules (e(�A; �A0) is
a shorthand for e(A1; A

0

1); : : : ; e(An; A
0

n)):
5

De�nition 3.2: (chase rules) Let �A ! B be a func-

tional dependency satis�ed by a virtual relation p. Let
�C be the attributes of p that are not in �A;B. The chase
rule corresponding to �A ! B, denoted chase(�A ! B),
is the following rule:

e(B;B0) :� p(�A;B; �C); p(�A0; B0; �C0); e(�A; �A0).

We denote by chase(�) the set of chase rules corre-

sponding to the functional dependencies in �.

In our example, the chase rules are

e(C;C0) :� conference(P;C); conference(P 0; C0);
e(P; P 0)

e(Y; Y 0) :� year(P; Y); year(P 0; Y 0); e(P; P 0)

e(L;L0) :� location(C; Y; L); location(C0; Y 0; L0);
e(C;C0); e(Y; Y 0)

The chase rules allow us to derive the following facts in
relation e:

5We only require relation e to be reexive for ease of ex-
position. For every rule r having a subgoal e(X;Y) in its
body, we could add a modi�ed version of rule r with subgoal
e(X;Y) removed and X replaced by Y . The resulting set of
rules wouldn't require e to be reexive.

4

e

hf1(fuzzy; sydney); ijcaii

hf2(fuzzy; sydney); 1991i

The extension of e is reexive by construction, and is
symmetric because of the symmetry in the chase rules.
To guarantee that e is an equivalence relation, it is still
needed to enforce transitivity of e. The following rule,
denoted by T , is su�cient for guaranteeing transitivity
of relation e:

e(X;Y) :� e(X;Z); e(Z; Y)

The �nal step in the construction is to rewrite query
q in a way that it can use the equivalences derived in
relation e.
We de�ne the query �q by modifying q iteratively as

follows. If c is a constant in one of the subgoals of q,
we replace it by a new variable Z, and add the subgoal
e(Z; c). If X is a variable in the head of q, we replace
X in the body of q by a new variable X0, and add the
subgoal e(X0; X). If a variable Y that is not in the head
of q appears in two subgoals of q, we replace one of its
occurrences by Y 0, and add the subgoal e(Y 0; Y). We
continue until we cannot apply this rule anymore. Our
example query would be rewritten to

�q(L) :� location(C; Y; L0);
e(C; ijcai); e(Y; 1991); e(L0; L)

Note that evaluating query �q on the reconstructed
virtual relations and the derived equivalence relation e

yields the desired result: IJCAI '91 was held in Sydney.
Given a query q, a set of source descriptions V, and a

set of functional dependencies �, the constructed query
plan includes �q, the inverse rules V�1, the chase rules
chase(�) and the transitivity rule T . The following the-
orem shows that this query plan is maximally-contained
in q relative to �.

Theorem 3.1: Let � be a set of functional dependen-

cies, V a set of conjunctive source descriptions, and let q

be a conjunctive query over the virtual relations. Let R

denote the set of rules V�1 [chase(�)[T . Then, �q[R
is maximally-contained in q relative to �. Furthermore,

�q [R can be constructed in time polynomial in the size

of q, V, and �. 2

Proof: The key to the proof is to show that for every
conjunctive query plan P �� q, Pexp �� (�q [R)exp.
Because recursive query plans can be seen as an encoding
of the union of in�nitely many conjunctive query plans,
it su�ces to prove the claim for all conjunctive query
plans. We prove the following statement by induction
on k: if q is a query, P is a conjunctive query plan,
and e1; : : : ; ek is a sequence of queries with e1 = Pexp,
ek � q, and ei+1 results from ei by applying a chase step,
then Pexp �� (�q [R)exp. This would prove that �q [R
is maximally-contained in q relative to �.

For k = 1, Pexp is contained in q. As shown in
[Duschka and Genesereth, 1997a], this implies that Pexp

is contained in (q [V�1)exp. It follows that Pexp is con-
tained in (�q [R)exp relative to �.

For the induction step, let k > 1 and assume ek�1 6� q.
Let �A! B be the functional dependency that holds for
relation p and that is applied from ek�1 to ek. Then
ek�1 contains two subgoals of p, g1 and g2, with the
same values/variables for the attributes in �A, and g1
contains a variable X for attribute B that is replaced
by some value/variable in ek. Let h be the containment
mapping [Chandra and Merlin, 1977] that shows that q
contains ek. Replace every value/variableXi in an argu-
ment position in q that is mapped by h to an argument
position in ek that used to be variable X in ek�1 by a
new variable X0

i. For each of the new variables X0

i, add
two subgoals of p to q with the identical new variables for
the corresponding attributes �A, Xi and X0

i for attribute
B respectively, and new variables for the remaining at-
tributes. We can now �nd a containment mapping from
query q0 to query ek�1. This shows that ek�1 is con-
tained in q0. Therefore, Pexp � e1; : : : ; ek�1 is a chase
sequence with ek�1 � q0. By the induction hypothesis
we have that Pexp � (�q0 [R)exp. Using the chase rule
chase(�A ! B), the transitivity rule, and the reexivity
of relation e, we can show that �q0[R � �q[R. It follows
that Pexp �� (�q [R)exp.

Query �q contains all subgoals in q, and at most as
many additional subgoals of e as the sum of all arities of
the subgoals in q. Also, there are as many inverse rules
as there are subgoals in all source descriptions in V to-
gether. Finally, there are exactly as many chase rules as
there are functional dependencies in �. We can conclude
that �q [R can be constructed in time polynomial in the
size of q, V and �. 2

4 Limitations on binding patterns

Some information sources cannot answer arbitrary
atomic queries on the relation they contain. To model
source capabilities, we attach to each source relation an
adornment (see [Ullman, 1989], Chap. 12), specifying
which binding patterns the source supports.6 An adorn-
ment of a source relation v is a string of b's and f 's of
length n, where n is the arity of v. The meaning of the
adornment is that the source only supports queries in
which the arguments with b adornments are bound. The
other arguments may be either bound or free. For ex-
ample, the adornment vbf means that the �rst argument
must be bound in queries on v. We de�ne an executable

Horn rule as follows.

6For simplicity of exposition, we assume that each source
relation has a single adornment.

5

De�nition 4.1: (executable Horn rule) Let V be a set

of relations with binding adornment, and let r be the

following Horn rule whose body relations are in V:

q(�X) :� v1(�X1); : : : ; vn(�Xn)

The rule r is executable if the following holds for i =
1; : : : ; n: let j be an argument position of vi that has a b

adornment, and let � be the j'th element in �Xi. Then,

either � is a constant, or � appears in �X1 [: : :[�Xi�1.

A query plan includes source relations and other rela-
tions, which we model as having the all-free adornment
(i.e., fn, where n is the relation's arity). A query plan
P is executable if for every rule r 2 P, r is executable.
When sources have limitations on binding patterns,

it turns out that there may not be a �nite maximally-
contained plan, if we restrict ourselves to plans without
recursion. The following example, adapted from [Kwok
and Weld, 1996], illustrates the point.

Example 4.1: Consider the following sources:

v
f
1 (X) :� ijcaiPapers(X)

v
bf
2 (X;Y) :� cites(X;Y)

vb3(X) :� awardPaper(X).

The �rst source stores IJCAI papers, the second is a
citation database, but only accepts queries where the
�rst argument is bound, and the third source will tell
us whether a given paper won an award. Suppose our
query is to �nd all the award papers:

q(X) :� awardPaper(X)

For each n, the following is an executable conjunctive
query plan that is contained in q:

qn(Zn) :� v1(Z0); v2(Z0; Z1); : : : ; v2(Zn�1; Zn);
v3(Zn):

Furthermore, for each n, qn may produce answers that
are not obtained by any other qi, for any i. Intuitively,
a paper will be in the answer to qi if the number of
links that need to be followed from an IJCAI paper is i.
Therefore, there is no bound on the size of the conjunc-
tive queries in the maximally-contained plan.
We now show that by allowing recursive plans we can

produce a maximally-contained plan. On our example,
the construction will yield the following query plan. The
construction is based on inventing a new recursively-
de�ned relation, papers, whose extension will be the set
of all papers that can be reached from the papers in v1.

papers(X) :� v
f
1 (X)

papers(X) :� papers(Y); vbf2 (Y;X)

q(X) :� papers(X); vb3(X).

We now describe the construction for a given set of
adorned source relations V and a query q. The recur-
sive plan includes a unary relation dom whose intended
extension is the set of all constants that appear in the

query or in the source descriptions, or that can be ob-
tained by iteratively querying the sources. The rules
involving dom are the following.

De�nition 4.2: (domain rules) Let v 2 V be a source

relation of arity n. Suppose the adornment of v says

that the arguments in positions 1; : : : ; l need to be bound,

and the arguments l + 1; : : : ; n can be free. Then for

i = l + 1; : : : ; n, the following rule is a domain rule:

dom(Xi) :� dom(X1); : : : ; dom(Xl);
v(X1; : : : ; Xn).

Also, if c is a constant appearing in the source descrip-

tions in V or in query q, then the fact dom(c) is a domain

rule.

We denote by domain(V; q) the set of rules described
above for de�ning the predicate dom. Notice that all
domain rules are executable, and that relation dom has
adornment f . Every query plan P can be transformed to
an executable query plan by inserting the literal dom(X)
before subgoals g in P that have a variable X in an ar-
gument position that is required to be bound, and X

does not appear in the subgoals to the left of g in the
body. The resulting query plan, denoted by Pexec, is ex-
ecutable. Moreover, we can show that Pexec is equivalent
to P. Combining this result with the one of the previous
section, we can conclude with the following theorem:

Theorem 4.1: Let � be a set of functional dependen-

cies, V a set of conjunctive source descriptions with bind-

ing adornments, and let q be a conjunctive query over the

virtual relations. Then �q[chase(�)[T [domain(V; q)[
(V�1)exec is maximally-contained in q relative to �. 2

Finally, we note that the query plan can be con-
structed in time polynomial in the size of q, V and �.

5 Conclusions

We introduced a novel approach to creating informa-
tion gathering plans, that allows for recursive plans. We

have shown that recursive plans enable us to solve two
open problems. We described algorithms for obtaining a
maximally-contained query plan in the presence of func-
tional dependencies and in the presence of limitations
on binding patterns. Our results are also of practical
importance because functional dependencies and limita-
tions on binding patterns occur very frequently in infor-
mation sources in practice (e.g., the WWW).
Recursive information gathering plans have another

important methodological advantage. Query plans can
be constructed by describing a set of inferences that
the information agent needs to make in order to ob-
tain data from its sources. We are currently extend-
ing our algorithms to deal with order predicates (e.g.,
�; <; 6=) and with local completeness information about
the sources [Etzioni et al., 1994; Duschka, 1997].

6

Acknowledgements

We thank Harish Devarajan and Dan Weld for discus-
sions and comments on earlier versions of the paper.

References

[Aho et al., 1979] Alfred V. Aho, Yehoshua Sagiv, and
Je�rey D. Ullman. Equivalences among relational ex-
pressions. SIAM Journal on Computing, 8(3):218{246,
May 1979.

[Arens et al., 1996] Yigal Arens, Craig A. Knoblock,
and Wei-Min Shen. Query reformulation for dy-
namic information integration. International Journal
on Intelligent and Cooperative Information Systems,
6(2/3):99{130, June 1996.

[Chandra and Merlin, 1977] Ashok K. Chandra and
Philip M. Merlin. Optimal implementation of conjunc-
tive queries in relational data bases. In Proceedings of

the Ninth Annual ACM Symposium on the Theory of

Computing, pages 77{90, 1977.

[Chaudhuri et al., 1995] Surajit Chaudhuri, Ravi Krish-
namurthy, Spyros Potamianos, and Kyuseak Shim.
Optimizing queries with materialized views. In Pro-

ceedings of the Eleventh International Conference on

Data Engineering, IEEE Comput. Soc. Press, pages
190{200, Los Alamitos, CA, 1995.

[Chawathe et al., 1994] Sudarshan Chawathe, Hector
Garcia-Molina, Joachim Hammer, Kelly Ireland, Yan-
nis Papakonstantinou, Je�rey Ullman, and Jennifer
Widom. The TSIMMIS project: Integration of het-
erogeneous information sources. In Proceedings of

the 100th Anniversary Meeting, pages 7{18, Tokyo,
Japan, October 1994. Information Processing Society
of Japan.

[Duschka and Genesereth, 1997a] Oliver M. Duschka
and Michael R. Genesereth. Answering recursive
queries using views. In Proceedings of the Six-

teenth ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, Tucson, AZ, May
1997.

[Duschka and Genesereth, 1997b] Oliver M. Duschka
and Michael R. Genesereth. Query planning in Info-
master. In Proceedings of the 1997 ACM Symposium

on Applied Computing, San Jose, CA, February 1997.

[Duschka, 1997] Oliver M. Duschka. Query optimization
using local completeness. In Proceedings of the Four-

teenth National Conference on Arti�cial Intelligence,
Providence, RI, July 1997.

[Etzioni and Weld, 1994] Oren Etzioni and Daniel S.
Weld. A softbot-based interface to the internet. Com-

munications of the ACM, 37(7):72{76, 1994.

[Etzioni et al., 1994] Oren Etzioni, Keith Golden, and
Daniel Weld. Tractable closed world reasoning with
updates. In Proceedings of the 4th International Con-

ference on Principles of Knowledge Representation

and Reasoning, pages 178{189, San Francisco, CA,
June 1994.

[Kwok and Weld, 1996] Chung T. Kwok and Daniel S.
Weld. Planning to gather information. In Proceed-

ings of the AAAI Thirteenth National Conference on

Arti�cial Intelligence, 1996.

[Levy et al., 1995] Alon Y. Levy, Alberto O. Mendelzon,
Divesh Srivastava, and Yehoshua Sagiv. Answering
queries using views. In Proceedings of the 14th ACM

SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, San Jose, CA, May 1995.

[Levy et al., 1996] Alon Y. Levy, Anand Rajaraman,
and Joann J. Ordille. Query-answering algorithms for
information agents. In Proceedings of the Thirteenth

National Conference on Arti�cial Intelligence, Port-
land, OR, August 1996.

[Levy, 1996] Alon Y. Levy. Obtaining complete answers
from incomplete databases. In Proceedings of the 22nd

International Conference on Very Large Databases,
pages 402{412, Bombay, India, 1996.

[Qian, 1996] Xiaolei Qian. Query folding. In Proceed-

ings of the 12th International Conference on Data En-

gineering, pages 48{55, New Orleans, LA, February
1996.

[Rajaraman et al., 1995] Anand Rajaraman, Yehoshua
Sagiv, and Je�rey D. Ullman. Answering queries us-
ing templates with binding patterns. In Proceedings

of the 14th ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems, 1995.

[Sagiv and Yannakakis, 1980] Yehoshua Sagiv and Mi-
halis Yannakakis. Equivalence among relational ex-
pressions with the union and di�erence operators. J.

ACM, 27(4):633{655, 1980.

[Shmueli, 1993] Oded Shmueli. Equivalence of datalog
queries is undecidable. Journal of Logic Programming,
15:231{241, 1993.

[Ullman, 1989] Je�rey D. Ullman. Principles of

Database and Knowledge-Base Systems, volume 2.
Computer Science Press, 1989.

[Yang and Larson, 1987] H. Z. Yang and P.-�A. Larson.
Query transformation for PSJ-queries. In Proceedings

of the Thirteenth International Conference on Very

Large Data Bases, pages 245{254, Los Altos, CA,
1987.

7

