To appear in the Proceedings of the AAAI Workshop on
Al and Information Integration, Madison, WI, July 1998.

Query Planning with Digunctive Sour ces

Oliver M. Duschka

Socratix Systems, Inc.
oliver@socratix.com*

Abstract

We examine the query planning problem ininformation
integration systems in the presence of sources that con-
tain digunctiveinformation. We show that datal og, the
languageof choicefor representing query plansininfor-
mation integration systems, is not sufficiently expres-
siveinthiscase. We provethat digunctivedatalogwith
inequality is sufficiently expressive, and present a con-
structionof query plansthat are guaranteed to extract all
available information from digunctive sources.

1 Introduction

We examine the query planning problem in information in-
tegration systemsin the presence of sourcesthat containdis-
junctive information. The query planning problem in such
systems can be formaly stated as the problem of answer-
ing queries using views (Levy et al. 1995; Ullman 1997,
Duschka & Genesereth 1997a): View definitions describe
the information stored by sources, and query planning re-
quiresto rewrite aquery into one that only uses these views.
Inthispaper we are going to extend the algorithmfor answer-
ing queries using conjunctive views that was introduced in
(Duschka & Genesereth 19974) to also be ableto handledis-
junctionin the view definitions.

Examplel Assume an information source stores flight in-
formation. More precisdly, the source stores nonstop flights
by United Airlines (ua) and Southwest Airlines (sw), and
flights out of San Francisco International Airport (sfo) with
one stopover. The information stored by this source can be
described as being a view over a database with a relation
flight that stores all nonstop flights. The view definition that
describes this source is the following:

v(ua,From,To) :— flight(ua,From,To)
v(sw,From,To) :— flight(sw,From,To)

V(Airlinesfo,To) : — flight(Airline,sfo,Stopover),
flight(Airline, Stopover,To)

* Work performed as part of Ph.D. thesis research at Stanford
University.

Michael R. Genesereth
Stanford University
genesereth@cs.stanford.edu

A user might be interested in all cities that have nonstop
flightsto Los Angeles (1ax):

Q: g(From) :— flight(Airline,From,lax)

If {ua,jfk|ax) isatuplestored by theinformationsource, then
there is clearly a nonstop flight from New York (jfk) to Los
Angeles. Ontheother hand, if thetuple (ua,sfo,lax) isstored
by the information source then there doesn’t necessarily ex-
ist a nonstop flight from San Francisco to Los Angeles. In-
deed, thistuple might be stored because thereisaflight with
one stopover from San Francisco to Los Angeles. The task
of query planning in information integration systems is to
find aquery plan, i.e. aquery that only requires views, that
extracts as much information as possible from the available
sources. All flights to Los Angeles stored by the informa:
tion source with the exception of flights departing from San
Francisco International Airport are nonstop flights. There-
fore, the query plan isthefollowing:

P: g(From) :— v(Airline,From,lax),
From # sfo

Note that without the use of the ineguality constraint
“From # sfo” it wouldn’t be possible to guarantee that all
citiesreturned by the query plan indeed have nonstop flights
to Los Angeles. |

Previous work (Duschka & Levy 1997) showed that the
expressive power of datal og isboth required and sufficient to
represent “good” query plansin informationintegration sys-
tems when view definitions are restricted to be conjunctive.
As we have seen in Example 1, the presence of digunctive
sources in addition requires the use of inequality constraints
in query plans. So far, there are no algorithms that gener-
ate query plans with inequality constraints. But the differ-
ences between conjunctive sources and disjunctive sources
are much deeper. We will see in Example 2 that the expres-
sive power of datalog, even with inequality, isinsufficient to
represent query plans that extract all available information
from digunctive sources.

Example2 Assume that there are two information sources
available which are described by the following view defini-
tions:

v1(X) : = color(X, red)

v1(X) : = color(X, green)

v1(X) : = color(X, blue)

va(X,Y) :—edge(X,Y)

View v, stores vertices that are colored red, green, or blue.
View v, stores pairs of vertices that are connected by an
edge. Assume a user wants to know whether thereisapair
of vertices of the same color that are connected by an edge:

Q. q(yes’) :—edge(X,Y), color(X, 7),
color(Y, 7).

Considerthegraphs G4, G», and G inFigure 1. All of these
graphs are not three-colorable, i.e. for every possible color-
ing of theverticeswith at most three colors, therewill be one
edge that connects vertices with the same color. Therefore,

G, Gj!

Figure 1: Examples of grgphs that are not 3-
colorable.

every graph that contains G1, G2, or G5 as a subgraph con-
tainsan edge that connect two verticeswith the same color if
theverticesin G4, G5, and (G5 are colored by at most three
colors. These conditions are easily checkable by a datalog
query plan. For example, the query plan P; outputs 'yes
exactly when theinput graph contains G; as a subgraph and
when the verticesin GG are colored by at most three colors.

P q(yes’) i — v (Xq1), vi(X2), v1(X3), v1(Y),
v2(X1, X2), v2(X2, X3),
v2(X3, X1), v2(X1,Y),
v2(X2,Y), v2(X3,Y)

It followsthat query plan P, iscontained in query Q. More
generaly, every query plan that checks that the input graph
contains a not three-col orable subgraph, and that al the ver-
tices in the subgraph are colored by at most three colors, is
contained in Q. Also, every query plan that is contained in
Q outputs’yes’ only if thegraphs described by v, and v- are
not 3-colorable.

It iswell known that deciding whether a graph is three-
colorableisNP-complete (Karp 1972). Because the problem
of evduating a datalog program has polynomia data com-
plexity (Vardi 1982), thisshowsthat thereis no datal og query
plan that contains al the query plansthat are contained in Q.
Intuitively, the reason isthat for every datalog query plan P
that is contained in Q, an additional conjunctive query that
tests for one more not three-col orabl e graph can be added to
create aquery planthatisstill contained in @, but that is not
contained inP. O

Example 2 showed that the expressive power of datalogis
insufficient to represent query plansthat extract all available
information from digjunctive sources. In this paper, we will
present a construction of query plansformulated in digunc-
tive datalog with inequality that do guarantee to extract al
information. Example 3 showsthe query plan resulting from

our constructionwhen applied to the query planning problem
in Example 2.

Example 3 Let uscontinue Example2. Thedigunctivedat-
alog query plan that contains al query plans contained in
query Q isthe following:

P q(yes’) :—va(X,Y), (X, 7), (Y, 7)
(X, red) Ve(X, green) V o(X, blue) :— v1(X)
O

1.1 Reated work

The problem of answering queries using views (Levy et
al. 1995) has received considerable attention recently be-
cause of its relevance in information integration and data
warehousing (Ullman 1997; Levy, Srivastava, & Kirk 1995;
Duschka & Genesereth 1997b). Previous algorithms for
answering queries using views (Levy, Rgaraman, & Or-
dille 1996; Kwok & Weld 1996; Duschka & Genesereth
1997a; Qian 1996) deal only with conjunctive view defini-
tions. Sourcesthat can answer an infinitenumber of conjunc-
tive queries, represented by adatal og program, were studied
in (Levy, Raaraman, & Ullman 1996). To the best of our
knowledge, the algorithm presented in this paper isthe first
onethat solvesthe problem of answering queries using views
when view defintions are allowed to contain digunction.

2 Preliminaries
2.1 Digunctivedatalog

A digunctiveHorn ruleis an expression of theform
pl(Xl) Voo \/pn(Xn) = T1(Y1), cee Tm(Ym) (*)

where pq, ..., pn, and rq, ..., r, are predicate names, and
X1, .., Xp, Y1, ..., Y, aretuples of variables, constants,
and function terms. The head of theruleisp(X1) vV ...V
pn(Xy), anditsbodyisri(X1), ..., rm(Xm). Every vari-
ablein the head of arule must also occur in the body of the
rule. A Horn ruleis adigunctive Horn rule where the head
consists of one predicate only. A (digunctive) logic query
isaset of (digunctive) Horn rules, and a (digunctive) dat-
dog query is aset of function-free (digunctive) Horn rules.
If the predicates that appear in the bodies of therulesare al-
lowed to contain the built-in inequality predicate (#), then
the query language is caled (digunctive) datalog with in-
equdlity. Digunctive Horn rules with inequality have to sat-
isfy the additional constraint that every variablein the body
appears at least oncein an uninterpreted predicate. A predi-
cateisan intensiona database predicate, or IDB predicate, in
aquery Q if it appearsin the head of somerulein Q. Predi-
cates not appearingin any head in Q are extensiona database
predicates, or EDB predicates, in Q. We assume that every
query hasan IDB predicate ¢, called the query predicate, that
represents the result of @. A conjunctive query is a single
non-recursivefunction-freeHornrule. A positivequery, also
caled digunctive query, is a union of conjunctive queries

with the same predicate as head. In this paper, view defini-
tions, abbreviated as), are sets of positive queries, and user
queries are formulated in datal og.

2.2 Semantics

Various semantics have been given to disunctive datalog
gueries. The semantic that we are going to present here
is commonly known as cautious minimal moddl semantics
(Eiter, Gottlob, & Mannila1994). Aswe will see, digunc-
tive datalog with inequality and cautious minimal model se-
mantics is sufficiently expressive to represent “good” query
plansin the presence of digunctive sources. Wewill formal-
ize the notion of a“good” query planin Section 3.

The input of a digunctive datalog query @ consists of a
database D storing instances of al EDB predicatesin Q. A
model M of aquery @ and an input database D, denoted as
M E Q(D), isaninstance of the predicatesin @ such that

(i) M containstheinput database D, and

(i) whenever there is an instantiation o of arule (x) in
Q such that v (Y1)o, ..., rm(Ym)o arein M, then
pi(Xn)oisin M foratleastonei € {1,...,n}.

We denote theinstance of the query predicate ¢ in amodel
M by M,. Theoutput of Q, denoted Q(D), is the largest
instance of the query predicate ¢ that occursin all models of
Qand D,i.e

QD) = ﬂ M.

M M=Q(D)
If @ isnondigjunctivethen there isa unique minimal model
M with M = Q(D) for every D. Then Q(D) can be de-
termined by, for example, naive bottom-up eva uation (UlI-
man 1989). For the class of digunctive queries that we are
considering in this paper, thereisadirect — athoughin the
worst case co-NP-complete — method to compute Q(D) us-
ing conditional tables (Imielinski & Jr. 1984; Abiteboul &
Duschka 1998). However, we are not going to present this
evaluation technique here. The central notion for compar-
ing queries is the one of query containment. A query Q' is
containedinaquery Q if, for al databases D, Q' (D) iscon-
tained in Q(D).

2.3 Query Plans

A query plan isa query whose EDB predicates are view lit-
erals. The expansion P*F of aquery plan P isaquery in
whichal view literalsin P are replaced by their correspond-
ing view definition. Existentialy quantified variablesin the
view definitionsare replaced by new variablesin the expan-
sion.

3 Maximal Containment vs. Certain
Answers

In this section we are looking more closdly at the question
of what makes a query plan a“good” query plan. The most

basic requirement on a query plan P isthat it produces an-
swers that are asked for in the corresponding query @ —and
nothing elsg, i.e. that the expansion of P iscontained in Q.
Clearly, two query plansP; and P, can both satisfy thiscon-
dition, and still 7, might be better than P, because it might
be the case that P; always produces more answers than P,
i.e. P, iscontained in P;. Previouswork therefore focused
on the notion of maximally-contained query plans.

Definition 1 (maximal containment) Let £ be the lan-
guage for representing query plans. Given a query Q
and view definitions V', a maximally-contained query plan
w.rt. @, V, and £, denoted by maxg v -, isaquery plan that
contains all query plans whose expansion is contained in Q,
i.e
MaXo v c = U P.
PEL :PeerCQ
O

Depending on the language used for formulating query
plans, maximally-contained query plans might not be guar-
anteed to exist. For example, if query plans are restricted
to be formulated in datalog, then no maximally-contained
guery plan exists for the query and the view definitionsin
Example 2. The reason is that there is no (finite) datalog
query that is equivalent to the infinite union of conjunctive
guery plans whose expansion is contained in the user query.
Maximally-contained query plans can be found by adding
expressive power to the language used to formulate query
plans. As seen in Example 3, moving from datalog to dis-
junctive datal og as the language for query plansis sufficient
to represent a maximally-contained query plan.

The notion of maximal containment depends on the con-
crete language chosen to represent query plans. Indeed, it
would be preferable to have a notion of a“good” query plan
that isindependent from specific languages.

Definition 2 (certain answers) Given a query Q and view
definitions V', the function that computes the set of certain
answers w.rit. @ and V', denoted by certg v, isthe function
that maps a view instance to the tuplesthat are in all results
of evaluating @ on databases consistent with the view in-
stance and the view definitions, i.e. for every instance Z of
the views,

certgy(I) = ﬂ Q(D)
D :ICV(D)
O

Maximal containment is a syntactic, proof-theoretic no-
tion. In order to prove that a query plan P is maximaly-
containedinaquery Q itisnecessary to show that an arbitrar-
ily chosen query plan whose expansion iscontained in Q is
also contained in . On the other hand, the concept of com-
puting certain answersisasemantic, model -theoretic notion.
To provethat afunction computesall certain answersone has
to consider every database that isconsi stent withtheview in-
stance and the view definitions. Asin the case of, for exam-
ple, derivability of afirst-order logicformulaand itsvalidity,
thereisalso aduality between aquery plan being maximally-
contained in a query and this query plan computing exactly
the certain answers. Lemma 1 formally states thisduality.

Lemmal Let Q beaquery, let) beaset of view definitions,
and let £ be a language such that maxg y o exists. Then
certg y iscontained in maxg y . Moreover, if £ is mono-
tone then certg v isequivalent tomaxg vy ..

Proof. LetZ beanarbitrary view instance. We haveto show
that

N oo ¢ U ro.

D :ICV(D) PeL PeerCQ

Let¢ beatuplein(, . zcy(p) Q(D). Consider the follow-
ing query plan N

P q(t) Z—Ul(tll), e Ul(tlkl); R
Un tnl)a sy Un(tnkn)
where 11, ..., 1y, -5 tn1, - . ., ok, arethetuplesin the

view instance 7. We know that for every database D with
7CV(D),

Per(D) € {t} € QD)
and for every database D withZ € V(D),
Pr(D) = POV(D)) = {} C QD).

Therefore, P*? C Q. It followsthat ¢ isalso atuplein
UPEﬁ:PeIPgQ P(I)-

In order to show equivalence in the case of monotone
L, lett beatuplein | Jpe, . peerco P(Z), and let D be a
database with 7 C V(D). There exists at least one query
plan’P withP**? C Q andt € P(Z). Because of themono-
tonicity of P we can conclude that

P(Z) € PV(D)) = PH(D) € QD).
Therefore, tuplet isasoin (. zcyp) QD).]

The following example shows that maxg v« IS not guar-
anteed to be contained in certg y if query plans are alowed
to be nonmonotone,

Example4 Consider the following view definitions and
view instances

Vi ovi(X) :—p(X) I vy ={a}
n(X) —pX) = {ab)
va(X) 1= r(X)

and the following query:
Q: q(X) :=r(X)

The expansion of the nonmonotone query plan
P: q(X) 1= va(X), v1(X)

is contained in Q. Therefore, b € maxg y (7). On the
other hand, b ¢ certg v (Z) because the database D with
p={a,b}andr = {} satisfiesZ C V(D),and b ¢ Q(D).
Therefore, maxg v, isnot contained incertg y.]

4 Construction of maximally-contained
query plans

In this section, we are going to present a construction that
produces maximally-contained query plans in the presence
of digunctive sources. As we have seen in Example 2,
datalog — and any other language with polynomia data
complexity — is not sufficiently expressive to represent
maximally-contained query plansin thiscase. Our construc-
tion will therefore produce query plansin amore expressive
language, namely disjunctive datalog with inequality.

The central part of our construction isthe concept of dis-
junctiveinverse rules. Before we can proceed to this defini-
tion, we have to define some technical concepts. Let @1 U
... U Q, beapositiveview definition with

Qi v(X1) = puii(X11), ...

Qn: U(Xn) :_pnl(an)a] pnmn(Xnmn)

We can assumewithout | oss of generdlity that the sets of vari-
ables X1,..., X, aredl mutualy digoint. Given atuplet
in an instance of v, we have to determine which of the con-
junctivequeriesQ;, . . ., @,, might havegeneratedt. If there
isatuplet suchthat ¢ can be generated by any of the queries
Qi .., Qs thenthesequeriesare caled truly digunctive.
Moreformally, queries Q;, , . . ., Q;, arecaledtruly disunc-
tiveif thereis a substitution o such that X;,0 = X,;,0 =
...=X,;, 0. X;,0isawitnessof Q;,, ..., Q;, beingtruly
digunctive.

Let the arity of v be o, and let 74, ..., 7, be new con-
stants. A conjunction of inequalities ¢ involving only the
new constants 71, . . ., 7, and the constantsin X, ..., X,
iscaled an attribute constraint. A conjunctivequery Q; sat-
isfies an attribute constraint ¢ if al inequalitiesin ¢ hold af-
ter replacing each m; in ¢ by the corresponding X;[j]. If
queries Q;,, ..., Q;, are truly digunctive with most gen-

eral witness 7, and there is an attribute constraint ¢ satis-

y P1lm,y (Xlﬂh)

fiedby X;,,..., Xy, but not satisfied by any X; withj €
{1,...,n} = {i1,..., 4} and X; unifiablewith Z, then ¢
iscaled an exclusion conditionfor Q;,, ..., Q;,.

Example5 Let uscontinueExamplel. Thefollowingisthe
positive view definition we considered there with head vari-
ables renamed appropriately:

Q1 V(ua,ly, 1) :— flight(ua,Fy,11)
Qs V(SN,FQ ,Tz) :— fli ght(SN,Fz,Tz)
Qs: V(A3 ,SfO,Tg) i ﬂlght(Ag,SfO,S),
flight(435,S73)
Hereisalist of truly digunctive queries together with their

most general withess and their most genera exclusion con-
dition:

Q4 <Ua,F1,T1> o 7£Sf0

Q5 <SN,F2,T2> o ;é sfo

Qs <A3,SfO,T3> T 3& ua & #SN
01,093 {(uasfo,Ty) true

Q2, Q3 (swsfo,T2) true

Thislisttellsusthat atupleof theform (ua,FT), for example,
with F # sfo must have been generated by query Q,, and

atuple of the form (sw,sfo,T) must have been generated by
either query Q- or query Qs. O

We are now able to define the central concept of digjunc-
tiveinverse rules. Intuitively, inverse rules describe al the
databases that are consistent with the view definitions given
a specific view instance.

Definition 3 (Digunctiveinverserules) Let

Q1r v(Xy) = pii(X11), o Py (X im,)

Qn: U(Xn) 3_pn1(Xn1)a sy pnmn(Xnmn)
be a positive view definition with digoint sets of head vari-
ables X4,...,X,, and variables X1, ..., X; in the bod-
ies but not in X,...,X,. Let fi,...,fs be new func-
tion symbols. Then for every set of truly disjunctive queries
Qi .., Qs Withmost genera witness 2 and most general

exclusion condition ¢, thefollowingrulesare digunctivein-
verserules

pi151(X;161)\/"'\/pikék()?;kék) :_U(Z)a 30/
withé; € {1,...,my}fori=1,... k,and

Z[]l] : if (XﬁW)[]]:Xﬁ[]/]
_,) for some j
Xp il=9 Xp,l5] : if (Xp,)]j] isaconstant
]

f(Z) o i (X)) = X

for al 3, v, j. Condition ¢’ is generated from ¢ by re-
placing each constant 7; in ¢ by the corresponding variable
or constant 7 [j]. O

We denotethe set of digunctiveinverserulesof aset V of
view definitionsby V1.

Example6 The digunctive inverse rules of the positive
view definition in Example 5 are the following rules:
flight(ua,1,71) :— v(ua,F1,11), Fy # sfo
ﬂlght(SN,Fz,Tz) i V(SN,FQ ,Tz), Fy ;é sfo
ﬂight(Ag,SfO,f(Ag, SfO, Tg)) = V(A3 ,SfO,T3),
As #£ua, Az #sw
ﬂlght(Ag,f(Ag, SfO, T3),T3) = V(A3 ,SfO,T3),
As # ua, Az # sw
flight(ua,sfo,77) V flight(ua,sfo, f (ua, sfo, 71))
:— V(ua,sfo,71)
flight(ua,sfo, 1) V flight(ua, f (ua, sfo, 71),71)
:— V(ua,sfo,71)
flight(ua,sfo, 1) V flight(sw,sfo, f(sw, sfo, %))
- — v(sw,sfo, 13)
flight(ua,sfo, 1) V flight(sw, f(sw, sfo, 7%),7%)
- — v(sw,sfo, 13)
O

Inthefollowingwewill consider the query plan consisting
of therulesof adatalog query Q together withthe digunctive
inverserules)Y~*. Digunctiveinverserulescontainfunction
symbols. Therefore, the output of aquery plan @ U V=1 can
contain tuples with function symbols. Given a query plan

P and an instance 7, let us denote by P(Z) | the subset of
P(Z) that doesn’'t contain function symbols. As shown in
(Duschka & Genesereth 1997a) for datalog query plans, itis
possibleto transform a query plan of theform Q U V! into
adatalog query plan, denoted as (Q UV ~1) |, that computes
only the tupleswithout function symbols, i.e.

(QUV™HIT) = (QuUVHI (@)

for dl instances 7. This transformation can easily be gener-
alized to digunctive datalog query plans.

The following theorem shows that the query plan (Q U
V~1) | isguaranteed to be maximally-contained in Q. The
proof of thetheorem crucially usesthe duality between max-
imal containment and certain answers discussed in Section 3.

Theorem 1 For every datalogquery Q and every set of pos-
itive view definitions V, the digunctive datalog query plan
(QuUV~1) | ismaximally-containedin Q.

Proof. (sketch) LetZ beaview instance. Because the @
part of query plan Q UV~ does not contain any EDB predi-
cates, and because all the predicatesin thebodiesof V! are
EDB predicates, every bottom-up eval uationof UV~ nec-
essarily first hastoevaluate)~ ! beforeevaluating Q. There-
fore,

(QuVTHE) = N
M MEV-1(T)

Sincedigunctivedata og queriesare monotone, it sufficesby
Lemma 1 to show that

(N amHl = () an.

M MIEV=1(T) D:ICV(D)

Q(M).

A B

Let M beamode of V~! andZ. By theconstruction of V=1
we know that Z C V(M). Therefore, B C A. Because B
doesn’t contain function symbolsit followsthat B C A |.

Let D beadatabasewithZ C V(D). Consider al the mod-
esof V=1 and V(D). One of these models coincides with
D withtheonly difference that somefunction symbolsinthe
model are replaced by constantsin D. Let M bethismodd,
and etz beatuplewithout functionsymbolsin. M, . Because
datalog queries are monotone when constants in the input
database are made equal, it followsthat Q(M) | C Q(D).
Therefore, A| C B. O

Theorem 2 For every datalog query Q and every set of pos-
itive view definitions V, the digunctive datalog query plan
(QUV~1) | can beevaluated in co-NP time (data complex-
ity).

Proof. Lettbeatuplethatisnotin(Q U V~1)| (Z) for
some instance Z. Then there is some model M of V=1 and
7 suchthatt isnotin Q(M). If Z contains » tuples and the
longest conjunctin}’ hasm literds, then thereisasubmodel
M’ of M withat most n x m tuplesthat isstill amodel of
V~!. Because of the monotonicity of Q, ¢ isalsonotin AM'.
Moreover, checking that M’ isamodel of V=1, andthat ¢ is
not in @(M) can be donein polynomial time. O

5 Conclusonsand futurework

We considered the problem of answering queriesusing views
with positiveview definitions. We showed that datal og i snot
expressive enough to represent maximally-contained query
plansin this case. One the other hand, digunctive datalog
with inequality is expressive enough. We presented a con-
struction of maximally-contained query plans in this more
expressive language.

The data complexity of evaluating digunctive datalog
queries with inequality in general is co-NP-complete. How-
ever, it seems like there are subcases that might allow poly-
nomial time evauation. The following subcases are likely
candidates: (i) @ hasno projections, (ii) @ isconjunctiveand
V has no projections, and (iii) al view definitionsin } have
at most two disuncts. Future work needs to be devoted to
look more closely at these subcases.

Acknowledgments

We would liketo thank Serge Abiteboul for pointing out the
relationship between maximal containment and the compu-
tation of certain answers. Also, thanks to Yehoshua Sagiv
and Werner Nutt for helpful discussionson thistopic.

References

Abiteboul, S., and Duschka, O. M. 1998. Complexity of
answering queries using materialized views. In Proceed-
ings of the Seventeenth ACM Symposium on Principles of
Database Systems, PODS’' 98.

Duschka, O. M., and Genesereth, M. R. 1997a. Answer-
ing recursive queries using views. In Proceedings of the
Sxteenth ACM Symposiumon Principles of Database Sys-
tems, PODS’97, 109 — 116.

Duschka, O. M., and Genesereth, M. R. 1997b. Infomas-
ter — aninformationintegrationtool. In Proceedings of the
Inter national Workshop on Intelligent Information Integra-
tion during the 21st German Annual Conference on Artifi-
cial Intelligence, KI-97.

Duschka, O. M., and Levy, A. Y. 1997. Recursive plansfor
information gathering. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, 13-
CAl.

Eiter, T.; Gottlob, G.; and Mannila, H. 1994. Adding dis-
junctionto datalog. In Proceedings of the Thirteenth ACM
Symposiumon Principles of Database Systems, 267 —278.
Imielinski, T., and Jr., W. L. 1984. Incomplete information
inrelational databases. J. ACM 31(4):761-791.

Karp, R. M. 1972. Reducibility among combinatoria prob-
lems. Complexity of Computer Computations85 — 104.
Kwok, C. T., and Weld, D. S. 1996. Planning to gather in-
formation. In Proceedings of the AAAI Thirteenth National
Conference on Artificial Intelligence.

Levy, A.Y.; Mendelzon, A. O.; Srivastava, D.; and Sagiv,
Y. 1995. Answering queries using views. In Proceedings

of the 14th ACM Symposiumon Principlesof Database Sys-
tems.

Levy, A.Y.; Raaraman, A.; and Ordille, J. J. 1996. Query-
ing heterogeneous information sources using source de-
scriptions. In Proceedings of the 22nd International Con-
ference on \ery Large Databases, 251-262.

Levy, A. Y., Rgaraman, A.; and Ullman, J. D. 1996.
Answering queries using limited external processors. In
Proceedings of the 15th ACM Symposium on Principles of
Database Systems.

Levy, A.Y.; Srivastava, D.; and Kirk, T. 1995. Data model
and query evaluation in global information systems. Jour-
nal of Intelligent Information Systems: Integrating Artifi-
cial Intelligence and Database Technologies 5(2):121-43.
Qian, X. 1996. Query folding. In Proceedings of the 12th
International Conference on Data Engineering, 48-55.
Ullman, J. D. 1989. Principles of Database and Knowl-
edgebase Systems, volume 2. Computer Science Press.
Ullman, J. D. 1997. Information integration using logical
views. InProceedings of the S xth International Conference
on Database Theory.

Vardi, M. Y. 1982. The complexity of relationa query
languages. In Proceedings of the Fourteenth Annual ACM
Symposiumon Theory of Computing, 137 — 146.

