
To appear in the Proceedings of the AAAI Workshop on
AI and Information Integration, Madison, WI, July 1998.

Query Planning with Disjunctive Sources

Oliver M. Duschka
Socratix Systems, Inc.
oliver@socratix.com�

Michael R. Genesereth
Stanford University

genesereth@cs.stanford.edu

Abstract

We examine the query planning problem in information
integration systems in the presence of sources that con-
tain disjunctive information. We show that datalog, the
language of choice for representing query plans in infor-
mation integration systems, is not sufficiently expres-
sive in this case. We prove that disjunctive datalog with
inequality is sufficiently expressive, and present a con-
structionof query plans that are guaranteed to extract all
available information from disjunctive sources.

1 Introduction

We examine the query planning problem in information in-
tegration systems in the presence of sources that contain dis-
junctive information. The query planning problem in such
systems can be formally stated as the problem of answer-
ing queries using views (Levy et al. 1995; Ullman 1997;
Duschka & Genesereth 1997a): View definitions describe
the information stored by sources, and query planning re-
quires to rewrite a query into one that only uses these views.
In this paper we are going to extend the algorithm for answer-
ing queries using conjunctive views that was introduced in
(Duschka & Genesereth 1997a) to also be able to handle dis-
junction in the view definitions.

Example 1 Assume an information source stores flight in-
formation. More precisely, the source stores nonstop flights
by United Airlines (ua) and Southwest Airlines (sw), and
flights out of San Francisco International Airport (sfo) with
one stopover. The information stored by this source can be
described as being a view over a database with a relation
flight that stores all nonstop flights. The view definition that
describes this source is the following:

v(ua,From,To) :� flight(ua,From,To)
v(sw,From,To) :� flight(sw,From,To)
v(Airline,sfo,To) :� flight(Airline,sfo,Stopover),

flight(Airline,Stopover,To)

� Work performed as part of Ph.D. thesis research at Stanford
University.

A user might be interested in all cities that have nonstop
flights to Los Angeles (lax):

Q: q(From) :� flight(Airline,From,lax)

If hua,jfk,laxi is a tuple stored by the informationsource, then
there is clearly a nonstop flight from New York (jfk) to Los
Angeles. On the other hand, if the tuple hua,sfo,laxi is stored
by the information source then there doesn’t necessarily ex-
ist a nonstop flight from San Francisco to Los Angeles. In-
deed, this tuple might be stored because there is a flight with
one stopover from San Francisco to Los Angeles. The task
of query planning in information integration systems is to
find a query plan, i.e. a query that only requires views, that
extracts as much information as possible from the available
sources. All flights to Los Angeles stored by the informa-
tion source with the exception of flights departing from San
Francisco International Airport are nonstop flights. There-
fore, the query plan is the following:

P: q(From) :� v(Airline,From,lax),
From 6= sfo

Note that without the use of the inequality constraint
“From 6= sfo” it wouldn’t be possible to guarantee that all
cities returned by the query plan indeed have nonstop flights
to Los Angeles. 2

Previous work (Duschka & Levy 1997) showed that the
expressive power of datalog is both required and sufficient to
represent “good” query plans in information integration sys-
tems when view definitions are restricted to be conjunctive.
As we have seen in Example 1, the presence of disjunctive
sources in addition requires the use of inequality constraints
in query plans. So far, there are no algorithms that gener-
ate query plans with inequality constraints. But the differ-
ences between conjunctive sources and disjunctive sources
are much deeper. We will see in Example 2 that the expres-
sive power of datalog, even with inequality, is insufficient to
represent query plans that extract all available information
from disjunctive sources.

Example 2 Assume that there are two information sources
available which are described by the following view defini-
tions:

v1(X) :� color(X; red)
v1(X) :� color(X; green)
v1(X) :� color(X; blue)

v2(X;Y) :� edge(X;Y)

View v1 stores vertices that are colored red, green, or blue.
View v2 stores pairs of vertices that are connected by an
edge. Assume a user wants to know whether there is a pair
of vertices of the same color that are connected by an edge:

Q: q(0yes0) :� edge(X;Y); color(X;Z);
color(Y; Z).

Consider the graphsG1, G2, andG3 in Figure 1. All of these
graphs are not three-colorable, i.e. for every possible color-
ing of the vertices with at most three colors, there will be one
edge that connects vertices with the same color. Therefore,

G:2G:1 :3G

Figure 1: Examples of graphs that are not 3-
colorable.

every graph that contains G1, G2, or G3 as a subgraph con-
tains an edge that connect two vertices with the same color if
the vertices in G1, G2, and G3 are colored by at most three
colors. These conditions are easily checkable by a datalog
query plan. For example, the query plan P1 outputs ’yes’
exactly when the input graph contains G1 as a subgraph and
when the vertices in G1 are colored by at most three colors.

P1: q(0yes0) :� v1(X1); v1(X2); v1(X3); v1(Y);
v2(X1; X2); v2(X2; X3);
v2(X3; X1); v2(X1; Y);
v2(X2; Y); v2(X3; Y)

It follows that query plan P1 is contained in query Q. More
generally, every query plan that checks that the input graph
contains a not three-colorable subgraph, and that all the ver-
tices in the subgraph are colored by at most three colors, is
contained in Q. Also, every query plan that is contained in
Q outputs 0yes0 only if the graphs described by v1 and v2 are
not 3-colorable.

It is well known that deciding whether a graph is three-
colorable is NP-complete (Karp 1972). Because the problem
of evaluating a datalog program has polynomial data com-
plexity (Vardi 1982), this shows that there is no datalog query
plan that contains all the query plans that are contained inQ.
Intuitively, the reason is that for every datalog query plan P
that is contained in Q, an additional conjunctive query that
tests for one more not three-colorable graph can be added to
create a query plan that is still contained inQ, but that is not
contained in P. 2

Example 2 showed that the expressive power of datalog is
insufficient to represent query plans that extract all available
information from disjunctive sources. In this paper, we will
present a construction of query plans formulated in disjunc-
tive datalog with inequality that do guarantee to extract all
information. Example 3 shows the query plan resulting from

our construction when applied to the query planning problem
in Example 2.

Example 3 Let us continue Example 2. The disjunctive dat-
alog query plan that contains all query plans contained in
query Q is the following:

P: q(0yes0) :� v2(X;Y); c(X;Z); c(Y; Z)

c(X; red) _ c(X; green) _ c(X; blue) :� v1(X)

2

1.1 Related work

The problem of answering queries using views (Levy et
al. 1995) has received considerable attention recently be-
cause of its relevance in information integration and data
warehousing (Ullman 1997; Levy, Srivastava, & Kirk 1995;
Duschka & Genesereth 1997b). Previous algorithms for
answering queries using views (Levy, Rajaraman, & Or-
dille 1996; Kwok & Weld 1996; Duschka & Genesereth
1997a; Qian 1996) deal only with conjunctive view defini-
tions. Sources that can answer an infinite number of conjunc-
tive queries, represented by a datalog program, were studied
in (Levy, Rajaraman, & Ullman 1996). To the best of our
knowledge, the algorithm presented in this paper is the first
one that solves the problem of answering queries using views
when view defintions are allowed to contain disjunction.

2 Preliminaries

2.1 Disjunctive datalog

A disjunctive Horn rule is an expression of the form

p1(�X1) _ : : :_ pn(�Xn) :� r1(�Y1); : : : ; rm(�Ym) (�)

where p1; : : : ; pn, and r1; : : : ; rm are predicate names, and
�X1, : : :, �Xn, �Y1, : : :, �Ym are tuples of variables, constants,

and function terms. The head of the rule is p1(�X1) _ : : : _

pn(�Xn), and its body is r1(�X1), : : :, rm(�Xm). Every vari-
able in the head of a rule must also occur in the body of the
rule. A Horn rule is a disjunctive Horn rule where the head
consists of one predicate only. A (disjunctive) logic query
is a set of (disjunctive) Horn rules, and a (disjunctive) dat-
alog query is a set of function-free (disjunctive) Horn rules.
If the predicates that appear in the bodies of the rules are al-
lowed to contain the built-in inequality predicate (6=), then
the query language is called (disjunctive) datalog with in-
equality. Disjunctive Horn rules with inequality have to sat-
isfy the additional constraint that every variable in the body
appears at least once in an uninterpreted predicate. A predi-
cate is an intensional database predicate, or IDB predicate, in
a queryQ if it appears in the head of some rule in Q. Predi-
cates not appearing in any head inQ are extensional database
predicates, or EDB predicates, in Q. We assume that every
query has an IDB predicate q, called the query predicate, that
represents the result of Q. A conjunctive query is a single
non-recursive function-free Horn rule. A positive query, also
called disjunctive query, is a union of conjunctive queries

with the same predicate as head. In this paper, view defini-
tions, abbreviated as V, are sets of positive queries, and user
queries are formulated in datalog.

2.2 Semantics

Various semantics have been given to disjunctive datalog
queries. The semantic that we are going to present here
is commonly known as cautious minimal model semantics
(Eiter, Gottlob, & Mannila 1994). As we will see, disjunc-
tive datalog with inequality and cautious minimal model se-
mantics is sufficiently expressive to represent “good” query
plans in the presence of disjunctive sources. We will formal-
ize the notion of a “good” query plan in Section 3.

The input of a disjunctive datalog query Q consists of a
database D storing instances of all EDB predicates in Q. A
model M of a query Q and an input database D, denoted as
M j= Q(D), is an instance of the predicates in Q such that

(i) M contains the input database D, and

(ii) whenever there is an instantiation � of a rule (�) in
Q such that r1(�Y1)�, : : :, rm(�Ym)� are in M, then
pi(�Xn)� is in M for at least one i 2 f1; : : : ; ng.

We denote the instance of the query predicate q in a model
M by Mq. The output of Q, denoted Q(D), is the largest
instance of the query predicate q that occurs in all models of
Q and D, i.e.

Q(D) =
\

M :Mj=Q(D)

Mq:

If Q is nondisjunctive then there is a unique minimal model
M with M j= Q(D) for every D. Then Q(D) can be de-
termined by, for example, naive bottom-up evaluation (Ull-
man 1989). For the class of disjunctive queries that we are
considering in this paper, there is a direct — although in the
worst case co-NP-complete — method to computeQ(D) us-
ing conditional tables (Imielinski & Jr. 1984; Abiteboul &
Duschka 1998). However, we are not going to present this
evaluation technique here. The central notion for compar-
ing queries is the one of query containment. A query Q0 is
contained in a queryQ if, for all databases D, Q0(D) is con-
tained in Q(D).

2.3 Query Plans

A query plan is a query whose EDB predicates are view lit-
erals. The expansion Pexp of a query plan P is a query in
which all view literals inP are replaced by their correspond-
ing view definition. Existentially quantified variables in the
view definitions are replaced by new variables in the expan-
sion.

3 Maximal Containment vs. Certain
Answers

In this section we are looking more closely at the question
of what makes a query plan a “good” query plan. The most

basic requirement on a query plan P is that it produces an-
swers that are asked for in the corresponding query Q – and
nothing else, i.e. that the expansion of P is contained in Q.
Clearly, two query plansP1 andP2 can both satisfy this con-
dition, and stillP1 might be better than P2 because it might
be the case that P1 always produces more answers than P2,
i.e. P2 is contained in P1. Previous work therefore focused
on the notion of maximally-contained query plans.

Definition 1 (maximal containment) Let L be the lan-
guage for representing query plans. Given a query Q

and view definitions V, a maximally-contained query plan
w.r.t. Q, V, and L, denoted by maxQ;V;L, is a query plan that
contains all query plans whose expansion is contained in Q,
i.e.

maxQ;V;L �
[

P2L :Pexp
�Q

P:

2

Depending on the language used for formulating query
plans, maximally-contained query plans might not be guar-
anteed to exist. For example, if query plans are restricted
to be formulated in datalog, then no maximally-contained
query plan exists for the query and the view definitions in
Example 2. The reason is that there is no (finite) datalog
query that is equivalent to the infinite union of conjunctive
query plans whose expansion is contained in the user query.
Maximally-contained query plans can be found by adding
expressive power to the language used to formulate query
plans. As seen in Example 3, moving from datalog to dis-
junctive datalog as the language for query plans is sufficient
to represent a maximally-contained query plan.

The notion of maximal containment depends on the con-
crete language chosen to represent query plans. Indeed, it
would be preferable to have a notion of a “good” query plan
that is independent from specific languages.

Definition 2 (certain answers) Given a query Q and view
definitions V, the function that computes the set of certain
answers w.r.t. Q and V, denoted by certQ;V , is the function
that maps a view instance to the tuples that are in all results
of evaluating Q on databases consistent with the view in-
stance and the view definitions, i.e. for every instance I of
the views,

certQ;V (I) =
\

D : I�V(D)

Q(D):

2

Maximal containment is a syntactic, proof-theoretic no-
tion. In order to prove that a query plan P is maximally-
contained in a queryQ it is necessary to show that an arbitrar-
ily chosen query plan whose expansion is contained in Q is
also contained in P. On the other hand, the concept of com-
puting certain answers is a semantic, model-theoretic notion.
To prove that a function computes all certain answers one has
to consider every database that is consistent with the view in-
stance and the view definitions. As in the case of, for exam-
ple, derivability of a first-order logic formula and its validity,
there is also a duality between a query plan being maximally-
contained in a query and this query plan computing exactly
the certain answers. Lemma 1 formally states this duality.

Lemma 1 LetQ be a query, letV be a set of view definitions,
and let L be a language such that maxQ;V;L exists. Then
certQ;V is contained in maxQ;V;L. Moreover, if L is mono-
tone then certQ;V is equivalent to maxQ;V;L.

Proof. Let I be an arbitrary view instance. We have to show
that \

D : I�V(D)

Q(D) �
[

P2L :Pexp
�Q

P(I):

Let t be a tuple in
T
D : I�V(D)

Q(D). Consider the follow-
ing query plan

P: q(t) :� v1(t11); : : : ; v1(t1k1); : : : ;
vn(tn1); : : : ; vn(tnkn)

where t11; : : : ; t1k1; : : : ; tn1; : : : ; tnkn are the tuples in the
view instance I. We know that for every database D with
I � V(D),

Pexp(D) � ftg � Q(D);

and for every database D with I 6� V(D),

Pexp(D) = P(V(D)) = fg � Q(D):

Therefore, Pexp � Q. It follows that t is also a tuple inS
P2L :Pexp

�Q
P(I).

In order to show equivalence in the case of monotone
L, let t be a tuple in

S
P2L :Pexp

�Q
P(I), and let D be a

database with I � V(D). There exists at least one query
planP withPexp � Q and t 2 P(I). Because of the mono-
tonicity of P we can conclude that

P(I) � P(V(D)) � Pexp(D) � Q(D):

Therefore, tuple t is also in
T
D : I�V(D)

Q(D). 2

The following example shows that maxQ;V;L is not guar-
anteed to be contained in certQ;V if query plans are allowed
to be nonmonotone.

Example 4 Consider the following view definitions and
view instances

V: v1(X) :� p(X) I: v1 = fag
v2(X) :� p(X) v2 = fa; bg

v2(X) :� r(X)

and the following query:

Q: q(X) :� r(X)

The expansion of the nonmonotone query plan

P: q(X) :� v2(X); :v1(X)

is contained in Q. Therefore, b 2 maxQ;V;L(I). On the
other hand, b 62 certQ;V (I) because the database D with
p = fa; bg and r = fg satisfies I � V(D), and b 62 Q(D).
Therefore, maxQ;V;L is not contained in certQ;V . 2

4 Construction of maximally-contained
query plans

In this section, we are going to present a construction that
produces maximally-contained query plans in the presence
of disjunctive sources. As we have seen in Example 2,
datalog — and any other language with polynomial data
complexity — is not sufficiently expressive to represent
maximally-contained query plans in this case. Our construc-
tion will therefore produce query plans in a more expressive
language, namely disjunctive datalog with inequality.

The central part of our construction is the concept of dis-
junctive inverse rules. Before we can proceed to this defini-
tion, we have to define some technical concepts. Let Q1 [
: : :[Qn be a positive view definition with

Q1: v(�X1) :� p11(�X11); : : : ; p1m1
(�X1m1

)
...

Qn: v(�Xn) :� pn1(�Xn1); : : : ; pnmn
(�Xnmn

).

We can assume without loss of generality that the sets of vari-
ables �X1; : : : ;

�Xn are all mutually disjoint. Given a tuple t
in an instance of v, we have to determine which of the con-
junctive queriesQ1; : : : ;Qn might have generated t. If there
is a tuple t such that t can be generated by any of the queries
Qi1 ; : : : ;Qik, then these queries are called truly disjunctive.
More formally, queriesQi1 ; : : : ;Qik are called trulydisjunc-
tive if there is a substitution � such that �X i1� = �X i2� =
: : : = �X ik�. �X i1� is a witness of Qi1 ; : : : ;Qik being truly
disjunctive.

Let the arity of v be �, and let �1; : : : ; �� be new con-
stants. A conjunction of inequalities ' involving only the
new constants �1; : : : ; �� and the constants in �X1; : : : ;

�Xn

is called an attribute constraint. A conjunctive queryQi sat-
isfies an attribute constraint ' if all inequalities in ' hold af-
ter replacing each �j in ' by the corresponding �Xi[j]. If
queries Qi1 ; : : : ;Qik are truly disjunctive with most gen-
eral witness �Z, and there is an attribute constraint ' satis-
fied by �X i1 ; : : : ;

�X ik , but not satisfied by any �Xj with j 2

f1; : : : ; ng � fi1; : : : ; ikg and �Xj unifiable with �Z, then '

is called an exclusion condition for Qi1 ; : : : ;Qik.

Example 5 Let us continue Example 1. The following is the
positive view definition we considered there with head vari-
ables renamed appropriately:

Q1: v(ua,F1,T1) :� flight(ua,F1,T1)
Q2: v(sw,F2,T2) :� flight(sw,F2,T2)
Q3: v(A3,sfo,T3) :� flight(A3,sfo,S),

flight(A3,S,T3)

Here is a list of truly disjunctive queries together with their
most general witness and their most general exclusion con-
dition:

Q1 hua,F1,T1i �2 6= sfo
Q2 hsw,F2,T2i �2 6= sfo
Q3 hA3,sfo,T3i �1 6= ua & �1 6= sw
Q1;Q3 hua,sfo,T1i true

Q2;Q3 hsw,sfo,T2i true

This list tells us that a tuple of the form hua,F,Ti, for example,
with F 6= sfo must have been generated by query Q1, and

a tuple of the form hsw,sfo,Ti must have been generated by
either query Q2 or query Q3. 2

We are now able to define the central concept of disjunc-
tive inverse rules. Intuitively, inverse rules describe all the
databases that are consistent with the view definitions given
a specific view instance.

Definition 3 (Disjunctive inverse rules) Let

Q1: v(�X1) :� p11(�X11); : : : ; p1m1
(�X1m1

)
...

Qn: v(�Xn) :� pn1(�Xn1); : : : ; pnmn
(�Xnmn

)

be a positive view definition with disjoint sets of head vari-
ables �X1; : : : ;

�Xn, and variables X1; : : : ; Xs in the bod-
ies but not in �X1; : : : ;

�Xn. Let f1; : : : ; fs be new func-
tion symbols. Then for every set of truly disjunctive queries
Qi1 ; : : : ;Qik with most general witness �Z and most general
exclusion condition', the following rules are disjunctive in-
verse rules:

pi1�1(
�X
0

i1�1
) _ : : :_ pik�k(

�X
0

ik�k
) :� v(�Z); '0

with �l 2 f1; : : : ;mlg for l = 1; : : : ; k, and

�X
0

�
 [j] =

8>><
>>:

�Z [j0] : if (�X�
)[j] = �X� [j
0]

for some j0
�X�
 [j] : if (�X�
)[j] is a constant

f�(�Z) : if (�X�
)[j] = X�

for all �,
, j. Condition '
0 is generated from ' by re-

placing each constant �j in ' by the corresponding variable
or constant �Z[j]. 2

We denote the set of disjunctive inverse rules of a set V of
view definitions by V�1.

Example 6 The disjunctive inverse rules of the positive
view definition in Example 5 are the following rules:

flight(ua,F1,T1) :� v(ua,F1,T1), F1 6= sfo
flight(sw,F2,T2) :� v(sw,F2,T2), F2 6= sfo
flight(A3,sfo,f(A3; sfo; T3)) :� v(A3,sfo,T3),

A3 6= ua, A3 6= sw
flight(A3,f(A3; sfo; T3),T3) :� v(A3,sfo,T3),

A3 6= ua, A3 6= sw
flight(ua,sfo,T1) _ flight(ua,sfo,f(ua; sfo; T1))

:� v(ua,sfo,T1)
flight(ua,sfo,T1) _ flight(ua,f(ua; sfo; T1),T1)

:� v(ua,sfo,T1)
flight(ua,sfo,T1) _ flight(sw,sfo,f(sw; sfo; T2))

:� v(sw,sfo,T2)
flight(ua,sfo,T1) _ flight(sw,f(sw; sfo; T2),T2)

:� v(sw,sfo,T2)

2

In the followingwe will consider the query plan consisting
of the rules of a datalog queryQ together with the disjunctive
inverse rulesV�1. Disjunctive inverse rules contain function
symbols. Therefore, the output of a query planQ[V�1 can
contain tuples with function symbols. Given a query plan

P and an instance I, let us denote by P(I) # the subset of
P(I) that doesn’t contain function symbols. As shown in
(Duschka & Genesereth 1997a) for datalog query plans, it is
possible to transform a query plan of the form Q[V�1 into
a datalog query plan, denoted as (Q[V�1)#, that computes
only the tuples without function symbols, i.e.

(Q[V�1)(I)# = (Q[V�1)# (I)

for all instances I. This transformation can easily be gener-
alized to disjunctive datalog query plans.

The following theorem shows that the query plan (Q [

V�1) # is guaranteed to be maximally-contained in Q. The
proof of the theorem crucially uses the duality between max-
imal containment and certain answers discussed in Section 3.

Theorem 1 For every datalog queryQ and every set of pos-
itive view definitions V, the disjunctive datalog query plan
(Q [V�1)# is maximally-contained inQ.

Proof. (sketch) Let I be a view instance. Because the Q
part of query planQ[V�1 does not contain any EDB predi-
cates, and because all the predicates in the bodies of V�1 are
EDB predicates, every bottom-up evaluation ofQ[V�1 nec-
essarily first has to evaluate V�1 before evaluatingQ. There-
fore,

(Q [V�1)(I) =
\

M :Mj=V�1 (I)

Q(M):

Since disjunctivedatalog queries are monotone, it suffices by
Lemma 1 to show that

(
\

M :Mj=V�1 (I)

Q(M)

| {z }
A

) # =
\

D : I�V(D)

Q(D)

| {z }
B

:

Let M be a model ofV�1 and I. By the construction of V�1

we know that I � V(M). Therefore, B � A. Because B

doesn’t contain function symbols it follows that B � A#.

Let D be a database with I � V(D). Consider all the mod-
els of V�1 and V(D). One of these models coincides with
D with the only difference that some function symbols in the
model are replaced by constants in D. Let M be this model,
and let t be a tuple without functionsymbols inMq . Because
datalog queries are monotone when constants in the input
database are made equal, it follows that Q(M) # � Q(D).
Therefore, A# � B. 2

Theorem 2 For every datalog queryQ and every set of pos-
itive view definitions V, the disjunctive datalog query plan
(Q[V�1)# can be evaluated in co-NP time (data complex-
ity).

Proof. Let t be a tuple that is not in (Q [V�1) # (I) for
some instance I. Then there is some model M of V�1 and
I such that t is not in Q(M). If I contains n tuples and the
longest conjunct in V has m literals, then there is a submodel
M0 of M with at most n �m tuples that is still a model of
V�1. Because of the monotonicity ofQ, t is also not inM0.
Moreover, checking thatM0 is a model of V�1, and that t is
not inQ(M) can be done in polynomial time. 2

5 Conclusions and future work
We considered the problem of answering queries using views
with positive view definitions. We showed that datalog is not
expressive enough to represent maximally-contained query
plans in this case. One the other hand, disjunctive datalog
with inequality is expressive enough. We presented a con-
struction of maximally-contained query plans in this more
expressive language.

The data complexity of evaluating disjunctive datalog
queries with inequality in general is co-NP-complete. How-
ever, it seems like there are subcases that might allow poly-
nomial time evaluation. The following subcases are likely
candidates: (i)Q has no projections, (ii)Q is conjunctive and
V has no projections, and (iii) all view definitions in V have
at most two disjuncts. Future work needs to be devoted to
look more closely at these subcases.

Acknowledgments
We would like to thank Serge Abiteboul for pointing out the
relationship between maximal containment and the compu-
tation of certain answers. Also, thanks to Yehoshua Sagiv
and Werner Nutt for helpful discussions on this topic.

References

Abiteboul, S., and Duschka, O. M. 1998. Complexity of
answering queries using materialized views. In Proceed-
ings of the Seventeenth ACM Symposium on Principles of
Database Systems, PODS ’98.
Duschka, O. M., and Genesereth, M. R. 1997a. Answer-
ing recursive queries using views. In Proceedings of the
Sixteenth ACM Symposium on Principles of Database Sys-
tems, PODS ’97, 109 – 116.
Duschka, O. M., and Genesereth, M. R. 1997b. Infomas-
ter — an information integration tool. In Proceedings of the
International Workshop on Intelligent Information Integra-
tion during the 21st German Annual Conference on Artifi-
cial Intelligence, KI-97.
Duschka, O. M., and Levy, A. Y. 1997. Recursive plans for
information gathering. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI.
Eiter, T.; Gottlob, G.; and Mannila, H. 1994. Adding dis-
junction to datalog. In Proceedings of the Thirteenth ACM
Symposium on Principles of Database Systems, 267 – 278.
Imielinski, T., and Jr., W. L. 1984. Incomplete information
in relational databases. J. ACM 31(4):761–791.
Karp, R. M. 1972. Reducibilityamong combinatorial prob-
lems. Complexity of Computer Computations 85 – 104.
Kwok, C. T., and Weld, D. S. 1996. Planning to gather in-
formation. In Proceedings of the AAAI Thirteenth National
Conference on Artificial Intelligence.
Levy, A. Y.; Mendelzon, A. O.; Srivastava, D.; and Sagiv,
Y. 1995. Answering queries using views. In Proceedings

of the 14th ACM Symposium on Principles of Database Sys-
tems.
Levy, A. Y.; Rajaraman, A.; and Ordille, J. J. 1996. Query-
ing heterogeneous information sources using source de-
scriptions. In Proceedings of the 22nd International Con-
ference on Very Large Databases, 251–262.
Levy, A. Y.; Rajaraman, A.; and Ullman, J. D. 1996.
Answering queries using limited external processors. In
Proceedings of the 15th ACM Symposium on Principles of
Database Systems.
Levy, A. Y.; Srivastava, D.; and Kirk, T. 1995. Data model
and query evaluation in global information systems. Jour-
nal of Intelligent Information Systems: Integrating Artifi-
cial Intelligence and Database Technologies 5(2):121–43.
Qian, X. 1996. Query folding. In Proceedings of the 12th
International Conference on Data Engineering, 48–55.
Ullman, J. D. 1989. Principles of Database and Knowl-
edgebase Systems, volume 2. Computer Science Press.
Ullman, J. D. 1997. Information integration using logical
views. In Proceedings of the Sixth InternationalConference
on Database Theory.
Vardi, M. Y. 1982. The complexity of relational query
languages. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, 137 – 146.

