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Abstract

We study the complexity of the problem of answering queriesusing
materialized views. This problem hasattracted alot of attention re-
cently because of its relevancein data integration. Previous work
considered only conjunctiveview definitions. We examine the con-
seguences of allowing more expressive view definition languages.
Thelanguageswe consider for view definitionsand user queriesare:
conjunctive queries with inequality, positive queries, datalog, and
first-order logic. We show that the complexity of the problem de-
pends on whether views are assumed to store all the tuples that sat-
isfy the view definition, or only asubset of it. Finally, we apply the
results to the view consistency and view self-maintainability prob-
lems which arise in data warehousing.

1 Introduction

The notion of materialized view is essential in databases[34] and is
attracting more and more attention with the popularity of dataware-
houses[28]. The problem of answering queries using materialized
views[24, 6, 10, 5, 43, 30, 26, 36, 12, 14, 11, 25] has been studied
intensively. We propose a systematic study of its complexity. We
also briefly consider the related problems of view consistency and
view self-maintainability [19]. Our results exhibit strong connec-
tions with two among the most studied problems in database the-
ory, namely query containment [7, 33, 23, 31, 9, 21, 13, 27] and in-
completeinformation querying, e.g. [20, 2]. Indeed, the works most
closely related to our complexity results are perhapsthose of van der
Meyden[40, 41, 42] and Vardi [38] on (indefinite) databasequeries.
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Our results highlight the basic roles played by negation (and in its
weak form ineguality) and recursion, and a crucia difference be-
tween open and closed wor ld assumption in the view definition.

Themainfocusof the paper isthe study of thedata complexity of the
problem of answering queriesusing materialized views. More pre-
cisely, the problemis for a fixed view definition and a fixed query,
given aview instance I and atuple ¢, is ¢ acertain answer, i.e. is
t in the answer to the query on the database no matter which is the
databaseyielding theview instance I. Thisarticulation of the prob-
lem highlights the main parameters: (i) What are the database and
the view models? (ii) What are the query and the view definition
languages? (iii) Isyielding assuming an open or a closed world?

In the present paper, we use the relational model for the database
and the view model. However, our work strongly suggests moving
towards an incomplete information model, e.g. conditional tables
[20]. Indeed, we will briefly show how these tables can be used for
solving the problem in most solvable cases. For the query and view
definition languages, we consider the most popul ar formal query lan-
guages, hamely conjunctive queries, conjunctive queries with in-
equality, positive queries, datalog, and first-order logic. We focus
on certain answers, i.e. tuplesthat arein theanswer for any database
yielding this particular view instance.

Not surprisingly, our results indicate that recursion and negation in
the view definition lead to undecidability. Somewhat also expect-
edly, we show that the closed world assumption sharply complicates
the problem. For instance, under the open world assumption the
certain answersin the conjunctive view definitions/datalog queries
case can be computed in polynomial time. On the other hand, al-
ready the conjunctive view definitions/conjunctive queries case is
co-NP-complete under the closed world assumption. Thisis an a
posteriori argument for a number of recent works that postulate an
openworld interpretation of views. Perhaps more unexpectedly, we
prove that inequalities (a very weak form of negation) lead to in-
tractability. Even under the openworld assumption, addinginequal-
itiesto the queries, or disjunction to the view definitions makesthe
problem co-NP-hard.

2 Theproblem

In thissection, we present the problem. We assumesomefamiliarity
with databasetheory [34, 1]. We start with adatabaseinstance D, a
view definition V, and aview instance /. The database consists of
a set of relations and so doesthe view. Now, given aquery Q, we



would like to compute Q( D). However, we assumethat weignore
D and only have accessto 7, sowe will try to get the best possible
estimate of Q(D) given !.

L et usbemore precise. Under the closedworld assumption(CWA),
the view instance I stores all the tuples that satisfy the view def-
initionsin V, i.e. I = V(D). Under the open world assumption
(OWA), on the other hand, instance I is possibly incomplete and
might only store some of the tuples that satisfy the view definitions
inV,ie I C V(D). Aswe can seefrom the following example,
in reasoning about the underlying database, it makes a difference
whether we are working under the open or closed world assump-
tion.

Example2.1  Consider the following view definition where the
view consists of two relations:

v1(X):—p(X,Y)
v2(Y) : = p(X,Y)

and assumethat the view instance consists of {v1(a), v2(b)}. Un-
der OWA, we only know that some p tuple has value « as its first
component, and some (possibly different) p tuple hasvalue b asits
second component. Under CWA, however, we can concludethat all
p tuples have value a as their first component and value b as their
second component, i.e. p containsexactly the tuple {a, b). o

Given some view definition and a view instance, observethat there
may be a number of possible databases, i.e. database instancesthat
yield thisview instancefor this view definition. So, we can think of
the databaseastheincomplete database[20] consisting of this set of
possibledatabases. To answer aquery, wefocuson certain answers,
i.e. on tuplesthat are in the answer for each possible database. As
seen in Example 2.1, this depends on whether we are assuming an
openor aclosedworld. Indeed, ananswerthat is certain under OWA
is also certain under CWA, but the converse does not hold in gen-
eral. For instance, in the previous example, the query “is {«, b} cer-
tainly in p?" isanswered positively under CWA and negatively un-
der OWA.. In fact, we will show that computing certain answers un-
der CWA is harder than under OWA. The following definition for-
malizes the concept of certain answer under both assumptions:

Definition 2.1 (certain answer) Let V be aview definition, I be
an instance of the view, and @ a query. A tuplet isa certain an-
swer under OWA if t is an element of Q(D) for each database D
with I C V(D). A tuplet is a certain answer under CWA if t isan
element of Q(D) for each database D with I = V(D). ]

We briefly recall the query languageswe consider and the standard
notion of complexity we use.

2.1 Query and view languages
A datalog ruleis an expression of the form:
p(X) = pi(X1), ..., pn(Xn)

where p, and p1, . .., pn, are predicate names, and X, X1, ..., X,
aretuples of variables and constants. Each variableinthe head of a

rule must also occur in the body of therule. A datalog query is afi-
nite set of datalog rules. The notion of recursivedatalog query/rule
is defined in the standard way. A conjunctive query (CQ) isasin-
gle non-recursive datalog rule. If the body of a conjunctive query
is allowed to contain the inequality predicate (), then the query
is called a conjunctive query with inequality (CQ¥). Every vari-
able in a query with inequality must occur at least oncein arela-
tional predicate. A positive query (PQ) is anon-recursive datalog
query together with one particular predicate defined by the query.
The query language PQ7 is obtained by also allowing . Finally,
first-order queries (F O) are defined in the standard way.

A materialized view, also called view instance, is the stored result of
previously executed queries. A view definition V' therefore consists
of aset of queries defining afinite set of predicates. So, for aquery
language £, wewrite V C L to denote the fact that each predicate
intheview is defined using aquery in L.

2.2 Data complexity

We will beinterested in the data complexity of the problem of com-
puting certain answersunder the open and closed world assumption.
The data complexity is the complexity of the problem as a function
of the size of the view instance. We will also refer to the query and
combined complexity of the problem. The query complexity is the
complexity of the problem as afunction of the size of the view def-
inition V and the query Q. The combined complexity is the com-
plexity of the problem as afunction of thesetwo arguments plusthe
size of the view instance. (These three notions are dueto [37].) In
the remaining of the paper, when we discusscomplexity, we always
mean data complexity unless specified otherwise.

In Section 3, we provethat the problemisin co-NpP for awiderange
of cases. We also highlight some connectionswith conditional table
querying. In Section 4, we examine the complexity of the problem
of computing certain answers under OWA and in Section 5 under
CWA. In Section 6, we consider view self-maintainability and view
consistency.

3 Using conditional tables

In this section, we briefly sketch a solution to the problem for the
open and closed world assumption, when the view definition isin
PQ7 and the query isin datalog”. We also present an effective
procedure based on conditional tables [20] which were introduced
to representincomplete information. Indeed, amain purpose of this
sectionisto highlight the strong links between our problem and that
of querying incomplete databases.

First we see next that, for PQ7 views and datalog™ queries, the
problem isin co-NP. So within these limits, it will suffice in the
following of the paper to prove co-NP-hardnessto establish co-NP-
completeness.

Theorem 3.1 For V C PQ7, Q € datalog” , the problemof de-
termining, given a view instance, whether a tuple is a certain an-
swer under OWA or CWA, isin co-NP.

Proof. We prove the claim first for OWA. Assumethat ¢ is not
acertain answer. Then thereis a database D with I C V(D) and
tisnotin Q(D). Let n bethe total number of tuplesin I and let



k bethe maximal length of conjunctsin the view definitions. Each
tuple in 7 can be generated by at most & tuplesin D. Therefore,
there is adatabase D’ C D with at most nk tuples such that still
I CV(D'). Becausetisnotin Q(D) and Q ismonotone, ¢ isalso
not in Q(D'). It follows that there is a database D' whose size is
polynomially boundedin the sizeof 7 and V suchthat I C V(D'),
and¢isnotin @(D'). Moreover, checkingthat 7 C V(D') andthat
tisnotin Q(D') can be donein polynomial time.

For CWA, the proof is essentially the samewith I = V(D) in place
of I C V(D). O

We next turn to an effective way of computing the certain answers.
Theintuition is to represent, given aview instance, the set of possi-
ble databasesor more precisely a sufficient set of possibledatabases
by aconditional table, and then query the conditional table using the
techniques introduced by Imielinski and Lipski [20]. Due to space
limitations, we refer to [20, 1] for a definition of conditional tables.
Intuitively, a conditional table is a database instance which might
have variables as entriesin its tuples. Thereis also aglobal condi-
tion [1] on the set of variables and for each tuple, alocal condition
controlling the actual presenceof thetuple. A possible databasefor
atable T is obtained by choosing a valuation satisfying the global
condition, keeping only those tuples with atrue local condition and
valuating the variablesin those tuples.

Thefollowing result shows how the problem of querying material-
ized views can be reduced to the problem of querying conditional
tables, thereby highlighting the strong connection between materi-
alized views and incomplete databases. Due to space limitations,
we do not give a proof of the result. The construction used in the
proof isillustrated by an example.

Theorem3.2 Let V C PQ” and let I be a view instance. Then
one can construct a conditional table (with global condition) 7%,
resp. Tewa, such that for each datalog™ query Q, the certain an-
swersto Q using view instance I under OWA, resp. CWA, are ex-
actly the certain answersto Q given the incomplete database spec-
ified by Towa, resp. Tewa-

The previous theorem provides an algorithm of evaluating a query
on adatabasegiven some materialized view in co-NPtime: compute
the corresponding conditional table and then evaluate the query on
the table using the techniquesin [20].

Example 3.1 Supposethe view is specified by:

v(0,Y) :—p(0,Y)
o(X)Y):—p(X,Z), p(Z,Y)

and the view instance consistsof {v(0,1),v(1,1)}. Thenthereare
two different waysto obtain thefirst tuple and only onefor the sec-
ond. This yields the following conditional table for p (the global
condition istrue):

0 1 w=1
0 z w#l
z 1 w#£ 1
1 u true
a1 true

Thisis the table needed for OWA. For CWA, we haveto introduce
the constraints that the view does not hold for any other tuple. One
finds the following (complete) table for p:

— query —
views cQ CQ* PQ datalog FO
cQ PTIME CO-NP PTIME PTIME undec.
cQ* PTIME CO-NP PTIME PTIME  undec.
PQ CO-NP  CO-NP CO-NP  CO-NP  undec.
datalog | co-NP undec. co-NP  undec. undec.
FO undec. undec. undec. undec. undec.

Figure1: Datacomplexity of the problem of computing certain an-
swers under the open world assumption.

0 1 true
1 1 true

[}

We briefly discuss some aspects of the construction of the condi-
tional table. Consider the simplest case, i.e. a conjunctive query
view under OWA. Intuitively, the tableis constructed by “ skolem-
izing” the variables in the conjunctive query in a standard manner
such as [16]. Now, we obtain a conditional table. Thisis not quite
arepresentation of the possible databases since a possible database
may contain additional tuples. But with respect to certain answers,
we can simply query this conditional table in the style of [20] and
get the desired certain answers.

For disjunctionsin theview definition, weusetuplelocal conditions
asdonein the example (with w = 1 and w # 1). Finally for CWA,
this is done by evaluating the view definition V' on the conditional
table corresponding to OWA and adding as a constraint that each
tuple it generatesis indeed in the view instance 7. In the example,
the conditions simplify dramatically, but in general, this may result
inrather gory tables. Note that, more generally, one could similarly
introduce any total dependency[17, 39] on the database by chasing
[4, 3] the conditional table asin [20, 18]. Observe also that from a
practical viewpoint, this raises the issue of obtaining practical re-
strictions that prevent the conditions from becoming too compli-
cated.

4 Open world assumption

Figure 1 gives an overview of the complexity of computing certain
answers under OWA. Under OWA, the problem of computing cer-
tain answers is closely related to the query containment problem.
Therefore, decidability and undecidability results carry overin both
directions. Asshownin Theorem4.1, if the problemsare decidable,
then their query complexity is the same.

Theorem 4.1 Let £1, L2 € {CQ, CQ7, PQ, datalog, FO} bea
view definition language and query languagerespectively. Thenthe
problemof computing certain answersunder OWA of aquery Q €
L, givenaviewdefinitionV C £, and aview instanceisdecidable
if and only if the containment problemof aqueryin £, inaqueryin
L, isdecidable. Moreover, if the problems are decidable then the
combined complexity of the view problemand the query complexity
of the containment problemareidentical, so the data complexity of
the problemof computing certain answersunder OWA is at most the
query complexity of the query containment problem.



Proof.  Theclaim is established by giving reductions between
the two problems in both directions. We first consider the reduc-
tion from the problem of computing certain answers under OWA to
the query containment problem. LetV = {v1,...,vx} C £1 bea
view definition, @ € £, aquery, I aview instance, and ¢ atuple of
the same arity asthe head of Q. Let Q' beaquery consisting of the
rules of definition V together with the rule!

q'(t) — ’U1(t11), ceey ’Ul(tlnl), ceey ’l)k(tk1), ceey ’Uk(tknk)
where I istheinstancewith I (v1) = {t11,...,tin, }, ..., L(vk) =
{tr1, .- trn, }. If £1i8CQ or CQ7, then the view definitions
inV can besubstituted in for the view literalsin thisnew rule. This
yieldsjust one conjunctivequery. Inall cases, Q' isin £;. We show
that tuple ¢ is acertain answer of Q@ givenV and I if and only if Q'
iscontainedin Q.

“=": Assumethat t is a certain answer under OWA. Let D be a
database. If I  V(D), then Q'(D) = {}, and therefore Q'(D) is
trivialy containedin Q(D). If I C V(D), then Q'(D) = {¢} and
t € Q(D). Again, Q'(D) iscontainedin Q(D).

“«<": Assumethat Q' iscontainedin Q. Let D be a database with
I C V(D). Then Q'(D) = {t}, and therefore ¢ € Q(D). Hence,
t is acertain answer.

The remaining of the proof consists of a reduction from the query
containment problem to the problem of computing certain answers
under OWA. Let Q1 € £1 and Q2 € L, betwo queries. Let p be
anew predicate, and let ¢; and ¢» be the answer predicates of Q;
and Q: respectively. Consider as view definition the rules of Q;
together with the additional rule

v(e) i = (X)), p(X)

andtheinstancel = {v(c)}. Let thequery Q be defined by al the
rules of Q. together with the following rule:

q(c) : — q2(X), p(X).

Again, if £; or £ are C@Q or CQ7, then the definition of V' and
query Q respectively can be transformed into a conjunctive query.
Therefore, V C £1 and Q € £,. We show that Q; iscontainedin
Q. if and only if {c) is acertain answer of Q given) and I.

“=": Supposethat {c) is not a certain answer. Then there exists
adatabase D with I C V(D) and Q(D) does not contain {c}). It
follows that Q, (D) containsatuple that Q. (D) does not contain.
Therefore, Q1 is not containedin Q.

“«<=": Assumethat Q isnot containedin Q. Then there existsa
database D suchthat Q: (D) containsatuple ¢ that isnot contained
in Q2(D). Database D can be assumedto havep(D) = {t}. Then
V(D)= Iand Q(D) = {}. Therefore, (c) isnot acertain answer.
]

The previoustheorem involvesquery complexity. However, we are
primarily concerned by data complexity, and query complexity re-
sults can be misleading. For example, the query complexity of the
containment problem of a conjunctive query in a datalog query is
EXPTIME-complete, whereasthe containment problem of aconjunc-
tive query in a conjunctive query with inequality is considerably

'Inthecaseof 'O, weusethefirst-order formulacorresponding
to thisrule.

easier, namely 115 -complete[42]. In comparison, the datacomplex-
ity of computing certain answers under OWA for conjunctive view
definitions and datal og queriesis polynomial, whereasit is presum-
ably harder, namely co-NP-complete, for conjunctive view defini-
tions and conjunctive queries with inequality.

4.1 Conjunctiveview definitions

In this section we consider the complexity of the problem of com-
puting certain answers under OWA in the case of conjunctive view
definitions. We will consider queries of different expressive power.

411 Polynomial cases

The main tool for proving polynomial time bounds is the notion of
maximally-contained query plans. Werecall therelevant definitions
here.

Theinput of adatalog query @ consists of adatabase D storing in-
stances of all EDB predicatesin Q. Given such a database D, the
output of Q, denoted Q( D), is an instance of the answer predicate
¢q asdetermined by, for example, naive evaluation [35]. A datalog
query Q' is containedin a datalog query Q if, for all databases D,
Q'(D) iscontainedin Q(D).

A datalog query P is a query plan if al EDB predicatesin P are
view literals. The expansion P¢*? of adatalog query plan P is ob-
tained from P by replacing all view literals with their definitions.
Existentially quantified variables in view definitions are replaced
by new variablesin the expansion. A query plan P is maximally-
containedin adatalog query @ w.r.t. aview definition V' if P*F C
Q, and for each query plan P’ with (P')**? C @, itisthe case
that P’ is also contained in P. Intuitively, a maximally-contained
query planisthebest of all datalog query plansin usingtheinforma-
tion available from the view instances. As shownin[10], it is easy
to construct these maximally-contained query plansin the case of
conjunctive view definitions.

Theorem 4.2 shows that maximally-contained query plans compute
exactly the certain answers under OWA.

Theorem 4.2 For V C CQ, Q € datalog, and query plan P that
ismaximally-contained in @ with respectto V', P computes exactly
the certain answersof @ under OWA for each view instance /.

Proof. Assumefor the sake of contradiction that thereis an in-
stance I of the view such that P fails to compute a certain answer
t of Q under OWA. Let P’ bethe query plan that consists of all the
rules of P, together with two additional rules r; and r»:

i ¢ (X):—q(X)
o q/(t) — ’01(t11),
’Uk(tkl),

) Ul(tlnl)’ s
) Uk(tk"k)

where ¢ is the answer predicate of P, and [ is the instance with
I(’U1) = {t11, . ,t1n1}, veey I(’Uk) = {tk1, N ,tknk}- We are
going to show that (P’)**? is contained in Q. Since P’ is not con-
tained in P, this contradicts the maximal containment of P in Q.
Therefore, there cannot be a certain answer ¢ under OWA that P
fails to compute.



In order to seethat (P*)*“” iscontainedin Q, wehaveto show that
P'(V(D)) is contained in Q( D) for each database D. Let D be
an arbitrary database. Because P*“* is known to be contained in
Q, it sufficesto show that r>(V(D)) iscontainedin Q(D). If I is
not contained in V( D), then 2 (V(D)) is the empty set, which is
trivially contained in Q(D). So let us assume that I is contained
in V(D). Then r2(V(D)) = {t¢}. Becauset is a certain answer
under OWA, it follows by definition that ¢ is an element of Q( D).
Therefore, r2 (V(D)) iscontainedin Q(D). O

Asshownin [10] for all V C C@Q and Q € datalog, correspond-
ing maximally-contained datalog query plans can be constructed.
Because the data complexity of evaluating datalog queriesis poly-
nomial [37], thisimplies that the problem of computing certain an-
swers under OWA can be donein polynomial time.

Corollary4.1 For V C CQ and Q@ € datalog, the problem of
computing certain answers under OWA can be donein polynomial
time.

4.1.2 Inegualitiesin the view definition

We next show (Theorem4.3) that addinginequalitiesjust totheview
definition doesn’'t add any expressive power. The certain answers
are exactly the ssmeasif theinequalitiesin the view definition were
omitted. This means that the maximally-contained datalog query
constructed from the query and the view definition but disregard-
ing theinequality constraints computes exactly the certain answers.
Therefore, the problem remains polynomial.

Theorem4.3 Let V C CQ7 and Q € datalog. Define V™ to
be the same view definition as V' but with the inequality constraints
deleted. Then a tuple ¢ is a certain answer under the open world
assumption given V, @ and a view instance [ if and only if ¢ isa
certain answer under OWA given V~, @ and /.

Proof. “=": Assumethat ¢ isacertain answer under OWA given
V,Qand . Let D beadatabasewith I C V(D). Ifdso! C
V(D), then it follows immediately that ¢ isin Q(D). Otherwise,
there is a view definition » in V and atuple s € I suchthat s €
v~ (D), buts ¢ v(D). Let C # C' beaninequality constraintin v
that disabled the derivation of s in (). Becausewe can assume
that s isin »(.D") for somedatabase D', at least oneof C or C' must
be an existentially quantified variable X . Add tuplesto D that cor-
respondto thetuplesthat generate s inv~ (D), but with the constant
that X bindsto replaced by a new constant. These new tuplesthen
satisfy the inequality constraint C # C’. By repeating this process
for each such inequality constraint C # C’ and each such tuple s,
we arrive at adatabase D' with I C V(D"). Becauset isacertain
answer given V, it followsthat ¢ isin Q(D"'). Therefore, there are
tuplests,...,t, € D" that derivet. If any ¢; contains one of the
new constants, replaceit by the tuplet; € D that it was originally
derived from. Becauset doesn’t contain any new constants, and be-
cause @ cannot test for inequality, it follows that ¢ is also derived
from¢i, ... 1. Hencetisin Q(D).

“<": Assumethat ¢ is a certain answer under OWA givenV~, Q
and . Let D beadatabasewith I C V(D). BecauseV iscontained
inV~, itfollowsthat I C V™ (D), andthereforet isin Q(D). O

4.1.3 Inequalitiesin the query

On the other hand, we see next (Theorem 4.4) that adding inequal-
ities to queries does add expressive power. A single inequality in
a conjunctive query, even combined with purely conjunctive view
definitions, sufficesto makethe problem co-NP-hard. Vander Mey-
den proved asimilar result [40], namely co-NP hardnessfor the case
YV C CQ< and Q € CQ™~. Our theorem strengthensthis result to
YCCQandQ e CQ~.

Theorem 4.4 For V C CQ, Q € CQ7, the problem of determin-
ing whether, givena viewinstance, a tupleisa certainanswer under
OWA is co-NP-hard.

Proof. Let ¢ be a CNF formula with variables z4, . .., z, and
conjunctses, . . ., ¢,,. Consider the conjunctiveview definition and
view instance:

w(X,Y,Z) = p(X,Y,Z)

v2(X) — r(X)Y)

v3(Y) — p(X,Y, %), r(X, Z)

I(v1) = {(1,5,1) | z: oceursin ¢;}
U {(1,5,0) | #: occursin c; }

I{v2) = {(1),-+, (m)}

andthequery: ¢(c) : — r(X,Y), r(X,Y"), Y £ Y".

We can show that tuple {c) is a certain answer under OWA if and
only if formula ¢ is not satisfiable. Because the problem of testing
aCNF formulafor satisfiability is NP-complete[8], thisimplies the
claim.

“=": Assumethat ¢ is satisfiable. Then there is an assignment »
from z1,..., z, to true and false such that each conjunct of ¢
contains at least one variable z; with v(z;) = true or one negated
variable z; with v(z;) = false. Consider the database D with

p(D) = {(i,5,1) | z: occursinc;}
U {{s, ,0) | z; occursin c;}
r(D)={@, &) |i€{1,...,n},
(1 w(xi) = true
di = { 0 : wv(zi) }

v(z;) = false

Instance ! is contained in V(D), and Q(D) does not derive (c).
Therefore, (¢} is not a certain answer.

“<«<": Assumethat (c) is not a certain answer. Then there exists a
database D with I C V(D) suchthat Q(D) isthe empty set. This
means that for ¢+ = 1,...,n, database D contains exactly one r
tuple (i, d;). Consider the assignment v with v(z;) = true if D
containsthe r tuple (¢, 1), and with v(«;) = false otherwise. Let
¢; beoneof the conjuncts. Because(;) iscontainedin I(vs), there
must beap tuple (i, j, d;} andanr tuple (s, d;). If d; = 1, then¢;
containsavariable z; with v(z;) = true. If d; = 0, then¢; con-
tains a negated variable z; with v(z;) = false. Since v satisfies
each ¢;,  issatisfiable. o

By Theorem 4.2, we know that maximally-contained queries com-
pute exactly the certain answers under OWA. Because evaluating
datalog queries has polynomial datacomplexity [37], it followsthat
in general there are no datalog queriesthat are maximally-contained
in a conjunctive query with inequality.



414 First-order queries

We saw that even adding recursion to positive queries leaves the
datacomplexity of the problem of computing certain answersunder
OWA still polynomial. On the other hand, adding negation makes
the problem undecidablefor both OWA and CWA, asthe following
theorem shows.

Theorem4.5 For ¥V C CQ, Q € FO, the problemof determin-
ing, given a view definition together with a view instance, whether a
tupleisacertain answer under the open or closed world assumption
isundecidable.

Proof. Let ¢ beafirst-order formula. Consider the query

g(c) :— —p.

Clearly, {c) is a certain answer if and only if ¢ is not satisfiable.
Testing whether afirst-order formula admits afinite model is unde-
cidable (see [15]). Thisimpliesthe claim. o

4.2 Poditive view definitions

In the previous section, we proved that adding inequalities to the
query results in co-NP-completeness of the problem of computing
certain answersunder OWA. The following theorem showsthat al-
lowing disjunction in the view definition has the same effect on the
data complexity. The same result was proved by van der Meyden
in [41] while studying indefinite databases. We include the theorem
for the sake of completeness.

Theorem 4.6 [41] For V C PQ, Q € CQ, the problem of deter-
mining, given a view instance, whether a tuple is a certain answer
under OWA is co-NP-hard.

4.3 Datalog view definitions

Theorem 3.1 established that the problem can be solved in co-NP
for YV C PQ7 and Q € datalog” . Here we examine the effect on
the complexity of the problem of computing certain answers if we
allow datalog as view definition language. For positive queries, the
problem stays in co-NP as was shown by van der Meyden in [41].
However, Theorem 4.7 and Corollary 4.2 respectively establish that
the problem becomes undecidable for conjunctive queries with in-
equality and datalog queries.

4.3.1 Inegualities

In the case of conjunctive view definitions, adding inequalities to
the query increased the complexity of the problem of computing
certain answersunder OWA from polynomial to co-npP. With data-
log view definitions, addinginequalitiesto the query raisesthe prob-
lem from co-NP complexity to undecidability. In[40], van der Mey-
den showed undecidability for the case of V C datalog and Q €
PQ#. The following theorem proves that the problem is already
undecidablefor conjunctive queries with inequality.

Theorem 4.7 For V C datalog, Q € CQ7, the problemof deter-
mining, given a view instance, whether a tuple is a certain answer
under OWA is undecidable.

Proof. The proof is by reduction of the Post Correspondence
Problem [29] to the problem in the claim.

Let wi, ..., wn,wi,. .., w, bewords over alphabet {a, b}. Con-
sider the following datalog query that definesview v:
v(0,0) :—s(e, e, ¢€)
o(X,¥) 0o, 15),
S(Xo,X1,a/1) S(Xk_1,X,a/k),
(}/Oa}/laﬁl) (}/l—la}/aﬁl)
wherew; = a1 ... andw, = p1... 3;
oneruleforeach: € {1,...,n}.

s(X,Y,2):— p(X,X,Y), p(X,Y, Z)

and query Q defined by:

q(C) _p(Xa}/aZ)a p(Xa}/aZ/)a Z # Z/

Let the view instance I bedefined by (v) = {{e,e)} and I(s) =
{}. Wewill show that there exists a solution to the instance of the
Post CorrespondenceProblem givenby w1, . . ., wy, w1, ..., wh if
and only if {c) is not a certain answer under OWA.. Theresult then
follows from the undecidability of the Post Correspondence Prob-
lem[29].

1 2 3 4 5 6 7 e e
o BB 1B S

P LTI IO LI ICUICEIOISS

W, w w W
v(D): %Q G~ (5~ B @
WD) By e

Figure2: Theinstance of the Post Correspondence Problem given
by thewordsw; = ba, we = b, wa = bba, w| = ab, wh = bb, and
wh = ba hassolution “2113” because wsw, wy ws = bbababba =
whwiwiws. The figure shows a database D with (e, e) € v(D),
but Q(D) = {}.

=": Assume that the instance of the Post Correspondence Prob-

lem given by thEWOI’dSwl, e Wh, W, . w; hasasolution ¢y,
k. Thenwi, ...wi, = w’ S.w{ = 71...7m for some

characters i, ..., vm € {a,b}. Con5|der the daIabaseD with

0,1,71>,...,<m—2,m—1,7m_1>,

0,0,1) ( —2,m—2,m—1),
-1,

e), {e,e,e)}.

Clearly, Q(D) = {}. Moreover, it is easy to verify that s(D) and
v(D) areasfollows:



s(D)={(0,1,m),....,(m—=2,m —
(m —l,e,7m>,<e,e,e>}

v(D) = {(0,0),

(Jwiy |, |wi, 1),

(

(

(

1,7m—1>,

|wi, | + [wis |, [wi, | + [wi, ), .,

|wi1|+...+|wik_1|,|w£1|+...

e, e)}

+ |wi, 1),

Since! C v(D)and Q(D) = {}, it followsthat (¢} isnot acertain
answer.

<": Assume that {c) is not a certain answer under OWA. Then
there is adatabase D with I C »(D) suchthat Q(D) = {}. Be-
causetuple (e, e) isinv( D), theremust beconstantsco, c1, . . ., cm
with cg = 0 and ¢, = e and charactersy1, ..., vm € {a, b} such
that

<C0,C1a71>a <C1,C2,72>,~~~,<Cm—1,cm,7m> S S(D) (*)

Letdo,ds,...,d,, beconstantswith dg = 0 andéy,...
{a, b} be characters such that

a‘sm’ S

<d0,d1,51>, <d1, d2,52>, ey <dm1_1,dm/, 6m’> S S(D)

We are going to show by inductionon m’ thatfor m’ < m, d; = ¢
andé, = v, for: =0,...,m’. Theclamistrivially truefor m’ =
0. Fortheinductioncase, letm' > 0. Weknowthat (c;_1, ci, v:) €
S(D) and <di_1, d;, 5i> S S(D), andthat ¢;—1 = d;—1. By defini-
tion of s, thisimplies that tuples (c;—1, ci—1, ¢, (ci—1, ci—1,ds),
(cic1, ¢, i), and {ci—1,d;, 6;) areal inp(D). Because Q(D) =
{},itfollowsthat d; = ¢; and §; = ;.

Assume for the sake of contradiction that m’ > m. Thenthereisa
tuple {dym, dm+t1, Yms+1) € s(D), and therefore (dyy, drm, dimy1),
<dm,dm+1,’7m+1> € p(D) Because <6,6,6> € S(D), it fol-
lowsthat {(e,e,e) € p(D). Sinced,, = ¢, = e thisimplies
that d,y1 = e and vm+1 = e, which contradicts the fact that
Ym+1 € {a,b}. Hence, m’ = m.

We proved that there is exactly one chain of the form in (*). Be-

cause (e, e) € v(D),thereisasequencei; . ..ix Withiy, ... i €
{1,...,n}suchthatwi1...wik_71 7mandw ...w' =
Y1 ...7vm. Therefore i1, ...,k |sasolut|onto thelnstanceof the
Post Correspondence Problem givenby wi, ..., wy, wi,..., wh.

Theorem 4.7 has an interesting consequencefor the query contain-
ment problem of arecursive datalog query in a nonrecursive data-
log query with inequality. It showsthat thetechniquein [9] to prove
decidability of adatalog query in anonrecursive datalog query does
not carry to datalog with inequality. Indeed, it is an easy corollary
of Theorems4.1 and 4.7 that the problem is undecidable.

4.3.2 Datalogqueries

Aswe saw, thereis acloserelationship between the problem of com-
puting certain answersunder OWA and query containment. Not sur-
prisingly it istherefore the case that the problem becomes undecid-
able for datalog view definitions and datalog queries.

Corollary 4.2 For V C datalog, @ € datalog, the problem of
determining, given a view instance, whether a tupleisa certain an-
swer under OWA is undecidable.

Proof.  The containment problem of a datalog query in another
datalog query is undecidable[32]. Therefore, the claim follows di-
rectly from Theorem 4.1. m]

44 First-order view definitions

Theorem 4.5 showed that adding negation in queriesleadsto unde-
cidability. The following theorem now showsthat the sameis true
for adding negation to view definitions.

Theorem 4.8 ForV € FO, Q € C@Q, theproblemof determining,
givena view instance, whether a tuple isa certain answer under the
open or the closed world assumption is undecidable.

Proof. Let ¢ bealfirst-order formula, and p anew predicate. Con-
sider the view definition

v(c) 1= o(X) V p(X)
together with theinstance I = {v(¢)} and the query Q defined by:
q(c) 1= p(X)

We will show that {c) is acertain answer under the open or closed
world assumption if and only if formula ¢ is not satisfiable. By
Trahtenbrot’s theorem, testing whether afirst-order formula admits
afinite model is undecidable (see [15]). Thisimpliesthe claim.

“=": Supposethat ¢ is satisfiable. Then there exists a database I
such that ¢ (D) is satisfied, and such that p( D) is empty. For this
database, I = v(D)and Q(D) = {}. Therefore, {c) isnot acertain
answer.

“<": Supposethat (c) is not certain. Then there is a database D
with I C V(D) (or with I = V(D)) suchthat (c) isnotin Q(D).
Since p( D) isempty, ¢ (D) must be satisfied. Therefore, formula
v is satisfiable. |

5 Closed world assumption

Figure 3 givesan overview of the complexity of the problem of com-
puting certain answers under CWA. Computing certain answersun-
der CWA is harder than under OWA. Whereas the problem is poly-
nomial for ¥V C CQ7* and Q € datalog under OWA, the problem
isalready co-NP-completefor V € C'Q and Q@ € C'Q under CWA.
Moreover, whereas the problem is decidablefor V C datalog and
@ € PQ@Q under OWA, the problem is already undecidablefor V C
datalog and @ € C'Q under CWA.



— query —
views cQ CQ* PQ datalog FO
cQ CO-NP  CO-NP CO-NP  CO-NP  undec.
cQ? CO-NP CO-NP CO-NP  CO-NP  undec.
PQ CO-NP  CO-NP  CO-NP  CO-NP  undec.
datalog | undec. undec. undec. undec. undec.
FO undec. undec. undec. undec. undec.

Figure 3: Datacomplexity of the problem of computing certain an-
swers under the closed world assumption.

5.1 Conjunctiveview definitions

Thefollowing theorem showsthat computing certain answersunder
the closed world assumptionis aready co-NP-hardin the very sim-
plest case, namely in the case of conjunctive view definitions and
conjunctive queries.

Theorem5.1 For V C CQ, Q € CQ, the problemof determin-
ing, given aviewinstance, whether atupleisa certainanswer under
CWA is co-NP-hard.

Proof. LetG = (V, E) be an arbitrary graph. Consider the view
definition:

v1(X) :—color(X,Y)
v2(Y) :— color(X,Y)
v3(X,Y) :— edge(X,Y)

and theinstance I with I(vy) = V, I(v2) = {red, green, blue}
and I(vs) = E. We will show that under CWA the query

g(c) :— edge(X,Y), color(X,Z), color(Y, Z)

hasthetuple (c¢) asacertain answer if and only if graph & is not 3-
colorable. Becausetesting a graph’s 3-colorability is NP-complete
[22], thisimplies the claim.

For each database D with I = V(D), relation edge contains ex-
actly the edgesfrom £, and relation color relates all verticesin V/
to either red, green, or blue.

“=": Assumethat {c) is a certain answer of the query. It follows
that for each assignment of the verticesto red, green, and blue,
thereisanedge(e1, e2) in E suchthat e; and e, are assignedto the
samecolor. Therefore, thereisnot asingleassignment of verticesto
thethreecolorsred, green, and blue suchthat all adjacent vertices
are assigned to different colors. Hence G is not 3-colorable.

“«<": Assume G is not 3-colorable. Then for each assignment of
verticesin V to red, green, and blue there exists at least one edge
(e1,e2) suchthat e; and e, are assigned to the same color. It fol-
lows that the query will produce (¢} for each database D with I =
V(D), i.e. the query has {c) as acertain answer. o

5.2 Datalog view definitions

The final theorem in this section shows that for datalog view defi-
nitions, the problem is undecidable under CWA.

Theorem5.2 For V C datalog, @ € CQ the problem of deter-
mining, given a view instance, whether a tuple is a certain answer
under CWA is undecidable.

Proof. Let @; and Q- betwo datalog queries with answer predi-
cateq: and ¢ respectively. Consider the view definition consisting
of therulesof @, and Q-, and the rules

vi(c) :—r(X)
vi(c) 1= qu(X), p(X)
v2(c) 1= q2(X), p(X)

where p and r are two relations not appearingin @; and Q.. Con-
sider theinstance I with I(v1) = {{c)} and I(v2) = {}, and the
query Q defined by:

g(c) 1= r(X)
If Q1 C Qo, then for each database D with V(D) =1,
@ (D) p(D) € g2(D) N p(D) = I(v2) = {}.
Therefore,

r(D) = 1I(v1) = {{e)},

i.e. (¢) isacertain answer under CWA.

On the other hand, if @1 € Q-, then there is a database D such
that sometuple t isin Q1 (D), but not in Q2 (D). By extending D
suchthat p(D) = {¢} andr(D) = {}, wehavethat V(D) = I.
Because¢(D) = {}, (c) isnot acertain answer under CWA.

We established that {c) is a certain answer under CWA if and only
if @1 iscontainedin Q.. Theclaim now follows from the undecid-
ability of containment of datalog queries[32]. m|

6 View consistency and view
self-maintainability

In this section, we consider two other important problems on mate-
rialized views, view consistency and view self-maintainability. We
doit in the context of CWA since both of these problems make more
sensein that context than under OWA.

Definition 6.1 (view consistency) Let V be a view definition and
I an instance of the view. Then the view is consistent if thereis a
database D suchthat I = V(D). ]

Definition 6.2 (view self-maintainability) Let D be a database.
Anupdateto D is either adeletion d(¢) of atuplet in D, or anin-
sertion ¢(¢) of sometuplet notin D. LetV beaview definitionand
I aconsistent view instance. Thenthe view is self-maintainablefor
an update « if there exists aview instance J such that for each D
with I = V(D), J = V(a(D)). O



views | consistency self-maintainability

cQ NP CO-NP
cQ* NP CO-NP
PQ NP CO-NP
datalog undec. undec.
FO undec. undec.

Figure 4: Data complexity of the view consistency and the view
self-maintainability problem.

The complexity of these problemsis shown in Figure 4. The com-
plexity table for self-maintainability is the same as the one for the
problem of computing certain answers under CWA in Figure 3 for
conjunctive queries. The complexity of the view consistency prob-
lem is similar with NP in place of co-NP. Note that the undecidable
cases for the view consistency problem are r.e., whereas for com-
puting certain answers and self-maintainability, they are co-r.e.

Theorem 6.1

(i) For Y C PQ7, the view consistency problemisin NP, and
the view self-maintainability problemisin co-Np (wir.t. the
size of the view).

(ii) ForV C CQ, the view consistency problemis NP-hard, and
the view self-maintainability problemis co-Np-hard (w.r.t. the
size of the view).

(iii) ForV C datalog or YV C FO, theview consistency problem
is undecidable (r.e.), and the view self-maintainability prob-
lemaswell (co-r.e.).

Due to space limitations, the proof of this result is omitted. It ba-
sically involves some simple reductions of these problems from/to
the problem of answering queries using materialized views under
the closed world assumption.

7 Conclusion

We presented some complexity results with respect to materialized
views. A main contribution is (i) the exhibition of deep connec-
tionswith incompl etedatabasesand (asaconsequence) (ii) the point
of view that a materialized view should be seen as an incomplete
database. Thisindeed suggestsusing somemodel of incompletein-
formation astheview model. Wewill illustrate briefly thisdirection
with an example. Consider the self-maintainability problem of ma-
terialized views. Suppose we have such a view, the databaseis un-
available and we receive some updates to the database. A known
technique is to verify whether the view is self-maintainable. If it
is not, we raise our hands and in principle the view becomes un-
available. However, one could consider updating the incomplete
database corresponding to the view. We could continue answering
queries, and indeed, with such amodel, it is possible to have more
semanticsin our answers, e.g. provide besidescertain answers, pos-
sible answers, or indicate whether our answer is surely complete or
not. We intend to continue the present work in that direction.
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