
Query Planning in Infomaster

Oliver M. Duschka

duschka@cs.stanford.edu

Michael R. Genesereth

genesereth@cs.stanford.edu

Department of Computer Science
Stanford University

Stanford, CA 94305, USA

Abstract

Infomaster is an information integration system. It provides
integrated access to distributed, heterogeneous information
sources, thus giving its users the illusion of a centralized, ho-
mogeneous information system. Infomaster is the �rst such
system that is able to handle arbitrary positive relational
algebra user queries and database descriptions. It is able ef-
�ciently to use integrity constraints and local completeness
information for optimization. The system has been deployed
in a wide variety of application areas, including engineering,
logistics, and electronic commerce. This article provides a
much requested overview of the query processing method
used by Infomaster.

1 Introduction

In recent years, there has been a dramatic growth in the
number of publicly accessible databases on the Internet, and
all indicators suggest that this growth should continue in the
years to come. Unfortunately, retrieving information from
these databases is not easy for several reasons.

The �rst complication is distribution. Not every query
can be answered by the data in a single database. Useful
relations may be broken into fragments that are distributed
among distinct databases. In horizontal fragmentation, the
rows of a database are split across multiple databases. In
vertical fragmentation, the columns are split. Distributed
databases can exhibit mixtures of these types of fragmenta-
tion.

A second complication in database integration is het-

erogeneity. This heterogeneity may be notational or con-
ceptual. Notational heterogeneity concerns access language

Copyright c
1997 by the Association for Computing Ma-
chinery, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for pro�t or direct commercial advantage and
that copies bear this notice and the full citation on the
�rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior
speci�c permission and/or a fee. Request permissions
from Publications Dept., ACM Inc., fax +1 (212) 869-
0481, or (permissions@acm.org).

and protocol. One source may require SQL while another
requires OQL and a third uses an ad hoc notation. This sort
of heterogeneity can usually be handled through commercial
products (such as the Sybase OpenServer). However, even
if we assume that all databases use a standard language
and protocol, there can still be conceptual heterogeneity,
i.e. di�erences in relational schema and vocabulary. Dis-
tinct databases may use di�erent words to refer to the same
concept, and/or they may use the same word to refer to dif-
ferent concepts. Reassembling the distributed fragments of
a database in the face of heterogeneity is doubly di�cult.

Infomaster is an information integration tool that solves
these problems. It provides integrated access to distributed,
heterogeneous information sources, thus giving its users the
illusion of a centralized, homogeneous information system.

Infomaster has been used in a variety of application ar-
eas, including engineering, logistics, and electronic commerce
among others. The �rst application, a concurrent engineer-
ing system for the design of digital circuits, was completed in
1992. The most widely used application, the Stanford Infor-
mation Network, has been in operation since 1995, providing
public access to information about people, used goods, hous-
ing rentals, events, and so forth. Stanford University has re-
cently embarked on a project aimed at expanding the use of
Infomaster to integrate its thousands of campus databases.
CommerceNet is investigating the use of Infomaster in inte-
grating the catalogs of its 150+ member companies.

This article provides a much requested overview of Info-
master. Section 2 de�nes the description language used by
the system; section 3 sketches the system's query process-
ing algorithm; and section 4 presents results on guaranteed
system behavior. The conclusion describes related work.

2 Language

In de�ning the language used by Infomaster, we start with
a set of constants and a �nite set of predicates. The exten-
sion of an n-ary predicate is the set of n-tuples of constants
for which the predicate holds. Predicates can be divided
into two types according to storage. Extensional predicates
are those whose extensions are stored explicitly in at least
one database. All other predicates are intensional. Pred-
icates can also be classi�ed according to de�nition. Views
are predicates with de�nitions written in the de�nitional
language described below. Base predicates are predicates
without de�nitions. Note that, in much of database theory,
views are intensional predicates. In our case, however, views
are extensional while base relations are intensional.

We assume that all available data is stored in a �nite

1

set of databases. A single database can store the extensions
of multiple predicates. Moreover, the extension of a predi-
cate can be stored in more than one database. Note that a
database either stores a relation completely or does not store
it at all. Fragmentation is dealt with by de�ning versions
of the relations for each of the databases involved (hereafter
called site relations).

We use a Datalog-like language to encode information
about these relations. Database predicates and object con-
stants are written in lower case; variables are written in
upper case.

1. An atom is an expression of the form �(�1; : : : ; �n),
where � is an n-ary predicate and each �i is either a
constant or a variable.

2. A positive Boolean expression is either an atom, an
expression of the form �^ (i.e. a conjunction), or an
expression of the form �_ (i.e. a disjunction), where
� and are positive Boolean expressions.

3. A de�nition is an expression of the form � �, where
 is an atom and � is a positive Boolean expression.
 is called the head of the de�nition, and � is called
the body. De�nitions are required to be safe, i.e. all
variables appearing in the head must appear in the
body. Variables appearing in the body but not in the
head are assumed to be existentially quanti�ed. The
bodies of de�nitions are also required to be uniform
with respect to the variables in the head, i.e. the dis-
juncts in every disjunction must contain the same head
variables.

4. An integrity constraint is an expression of the form :�,
where � is a positive Boolean expression. Variables
appearing in an integrity constraint are assumed to be
universally quanti�ed.

In Infomaster, we require that de�nitions be unique, i.e.
if a predicate occurs in the head of one de�nition, it cannot
occur in the head of any other de�nition. Note, however,
that we allow Boolean expressions in the bodies of de�ni-
tions, not just conjunctions as in Datalog.

We also require that de�nitions be non-recursive. If a
predicate p occurs in the de�nition of q, then q cannot occur
in the de�nition of p or any predicate used to de�ne p and
so forth.

These are strong restrictions. However, they still allow
Infomaster to be used in a wide variety of applications. Most
importantly, they allow us to give useful guarantees of sys-
tem behavior that are impossible with more expressive lan-
guages.

The �rst use of this language is the de�nition of world
relations in terms of other relations (regardless of which re-
lations are extensional and which are intensional). For ex-
ample, we can de�ne the grandparent relation gp in terms
of the parent relation p as shown below.

gp(X;Z) � p(X;Y) ^ p(Y; Z)

The second use of the language is to describe the contents
of databases. As mentioned above, we do this by naming the
relations actually stored within those databases (the site re-
lations) and then de�ning those relations in terms of world
relations in the same ways that views are de�ned. For ex-
ample, assume that we have a database d1 that stores those
tuples of the unary relation r satisfying the unary relation s.
We can capture this information by de�ning the site relation
r1 and writing the following de�nition for r1.

r1(X) � r(X) ^ s(X)

Partial information can be expressed by inventing new
base relations (so-called gensym predicates) and using these
new relations in the de�nitions of other relations. For ex-
ample, we can express the fact that r2 is contained in r by
inventing a gensym predicate g and writing the following
de�nition.

r2(X) � r(X) ^ g(X)

By writing integrity constraints, we can describe what
tuples are not present in a relation. For example, we can
express the disjointness of relations p and q as follows.

:(p(X) ^ q(X))

The expressiveness of Infomaster's description language
allows us to de�ne a wide range of horizontal and vertical
fragments. One advantage of this approach is that di�er-
ent horizontal fragments can be described independently of
other horizontal fragments, since each fragment can be de-
scribed in separate rules.

3 Query Processing

Query processing in Infomaster consists of query planning
and plan execution. The query planning algorithm takes as
inputs a query Q and a collection � of rules and integrity
constraints like those described in section 2. The output of
the algorithm is a query processing plan suitable for input
to the plan execution algorithm. The plan execution algo-
rithm takes a query plan as input. It retrieves data from the
available databases and merges this data as described in the
plan. The output is a table of answers to the original query.

In this section, we present an informal sketch of the �ve
steps in the query planning algorithm.

1. Reduction. In this step, the system rewrites each atom
in the query using the de�nition of the associated pred-
icate. It then repeats the process until it obtains an
expression in terms of base relations (which, by de�-
nition, have no de�nitions of their own.) Termination
is assured due to the non-recursive nature of the de�-
nitions.

2. Abduction. Given an expression Qb in terms of base
relations and a set of de�nitions, the abduction pro-
cess produces the set R of all consistent and minimal
conjunctions of retrievable atoms that can be shown
from the de�nitions to be contained in Qb.

3. Conjunctive Minimization. In this step, Infomaster
eliminates any redundant conjunct, i.e. one that can
be shown to contain the remaining conjuncts.

4. Disjunctive Minimization. In this step, Infomaster
drops any disjunct that can be shown to be contained
in the union of the remaining disjuncts.

5. Grouping. Finally, the conjuncts within each conjunc-
tion are grouped so that the atoms in each group all
share a common provider.

For simplicity, we have described these steps as taking
place sequentially. In the implementation, some of the steps
are interleaved. For example, conjunctive minimization is
interleaved with abduction. This saves time by curtailing
further work on a conjunction once an inconsistency has
been detected.

2

4 Guarantees

We say that a plan R is semantically correct with respect
to a query Q if every answer to R is an answer to Q. R
is source-complete if every retrievable answer to Q will be
retrieved using R. A plan is locally minimal if it is not
possible to drop any conjunct or disjunct without losing or
gaining answers in some distribution of data compatible with
the rules and integrity constraints in the knowledge base.
The Infomaster planning algorithm produces plans that are
semantically correct, source-complete, and locally minimal.

A plan is globally minimal if there is no semantically cor-
rect and source-complete plan with fewer groups. It is possi-
ble to extend Infomaster to produce globally minimal plans
by iterating over possible plans; however, the cost of doing
this is substantial, and its bene�ts are unclear in practice.

Given the restrictions on the form of de�nitions and in-
tegrity constraints, it is possible to show that the algorithm
always terminates. Unfortunately, the problem of �nding
semantically correct and source-complete plans is at least
NP-hard; and so the worst case processing time for a query
can be exponential in terms of the number of atoms in the
base expansion of the query.

5 Conclusion and Related Work

In this paper, we have presented the database description
language and query planning algorithm used in Infomaster.
The design of Infomaster builds upon extensive work in the
�eld of information integration. Related e�orts to integrate
distributed information sources are the TSIMMIS project
[CGMH+94], the Information Manifold project [LRO96], and
the SIMS project [ACHK93].

TSIMMIS approaches the integration problem by de�n-
ing a list of query-templates. For each template, a query
plan expressing how to retrieve a query of this form is given.
TSIMMIS �nds prede�ned templates that match the user
query, and executes the corresponding stored query plans.
Obviously, query planning is very e�cient in this approach,
but the number of possible queries a user can ask is lim-
ited, and adding a new information source to the system
requires recoding of all related query plans. In comparison,
in Infomaster adding a new information source requires the
addition of just one new description, viz. that of the newly
added information source.

Like Infomaster, both SIMS and the Information Man-
ifold utilize source descriptions and dynamically generate
query plans for user queries. The description languages are
more restricted though. In SIMS, for example, it is impos-
sible to express the fact that an information source stores
the grandparent relation gp if only the parent relation is a
base relation. In the Information Manifold, it is possible to
express the fact that an information source stores gp; but,
if a user asks for gp, its query planning algorithm fails to
retrieve gp anyway.

Qian presents an algorithm in [Qia96] to compute se-
mantically correct and source-complete query plans. Qian's
algorithm is restricted to conjunctive queries. The query
planning algorithm used in Infomaster can be seen as a gen-
eralization of Qian's algorithm to arbitrary positive rela-
tional algebra queries. The authors generalize this result in
[DG96] to recursive queries.

The problem of optimizing conjunctive queries was solved
in [CM77], and the problem of optimizing unions of con-
junctive queries was solved in [SY80]. However, the ap-
proaches given there are unable to handle integrity con-

straints. The Infomaster optimization algorithm fully in-
corporates integrity constraints stating that a positive rela-
tional algebra query has an empty answer. This is a broad
class of integrity constraints, which includes disjointness,
for example. Moreover, the Infomaster optimization algo-
rithm makes use of local completeness information [EGW94,
Dus96]. If an information source is known to store the en-
tire extension of a predicate p, then no other information
sources storing parts of p need to be queried.

References

[ACHK93] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu,
and Craig A. Knoblock. Retrieving and
integrating data from multiple information
sources. International Journal of Intelligent
& Cooperative Information Systems, 2(2):127{
58, 1993.

[CGMH+94] Sudarshan Chawathe, Hector Garcia-Molina,
Joachim Hammer, Kelly Ireland, Yannis Pa-
pakonstantinou, Je�rey Ullman, and Jennifer
Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In Proceed-
ings of the 100th Anniversary Meeting, pages
7{18, 1994. Information Processing Society of
Japan.

[CM77] Ashok K. Chandra and Philip M. Merlin. Op-
timal implementation of conjunctive queries in
relational data bases. In Proceedings of the

Ninth Annual ACM Symposium on the The-
ory of Computing, pages 77{90, 1977.

[DG96] Oliver M. Duschka and Michael R. Genesereth.
Answering recursive queries using views. Tech-
nical Report 96-5, Logic Group, Department of
Computer Science, Stanford University, 1996.

[Dus96] Oliver M. Duschka. Query optimization us-
ing local completeness. Technical Report 96-
2, Logic Group, Department of Computer Sci-
ence, Stanford University, 1996.

[EGW94] Oren Etzioni, Keith Golden, and Daniel Weld.
Tractable closed world reasoning with updates.
In Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representa-
tion and Reasoning, pages 178{189, 1994.

[LRO96] Alon Y. Levy, Anand Rajaraman, and
Joann J. Ordille. Querying heterogeneous in-
formation sources using source descriptions. In
Proceedings of the 22nd International Confer-

ence on Very Large Databases, 1996.

[Qia96] Xiaolei Qian. Query folding. In Proceedings

of the 12th International Conference on Data
Engineering, pages 48{55, 1996.

[SY80] Yehoshua Sagiv and Mihalis Yannakakis.
Equivalence among relational expressions with
the union and di�erence operators. J. ACM,
27(4):633{655, 1980.

3

